
Extended version of the paper sent to EUROCRYPT 2007.

A New Concept of Hash Functions SNMAC Using a Special Block

Cipher and NMAC/HMAC Constructions

Vlastimil KLÍMA*

October 2006**

Abstract. In this paper, we present new security proofs of well-known hash constructions
NMAC/HMAC proposed by Bellare et al. in 1996. We show that block ciphers should be
used in hash functions in another way than it has been so far. We introduce a new
cryptographic primitive called special block cipher (SBC) which is resistant to attacks
specific for block ciphers used in hash functions. We propose to use SBC in the
NMAC/HMAC constructions, what gives rise to the new concept of hash functions called
Special NMAC (SNMAC). From our new NMAC/HMAC security proofs it follows that
SNMAC hash functions are computationally resistant to preimage and collision attacks.
Moreover, at CRYPTO 2005 Coron et al. proved that SNMAC is indifferentiable from a
random oracle in the limit. SNMAC construction is general and it enables various proposals
using different instances of the special block ciphers. We propose a special block cipher DN
(Double Net) and define hash function HDN (Hash Double Net) as the SNMAC construction
based on DN.
Keywords: Hash function, NMAC, HMAC, collision resistance, preimage resistance,
conception.

Contents
1. Introduction .. 2
2. Definitions of NMAC and HMAC... 4
3. Security of Hash Functions HMAC and NMAC ... 5

3.1. Theorems on HMAC security .. 6
3.2. HMAC preimage resistance ... 6
3.3. HMAC collision resistance .. 7
3.4. Theorems on NMAC security .. 7
3.5. NMAC preimage resistance ... 7
3.6. NMAC collision resistance .. 7

4. A New Concept of SBC and SNMAC ... 8
5. A Concrete Instance of SBC and SNMAC .. 11
6. Conclusion.. 11
7. References .. 12
8. Appendix 1: Proofs of Theorems ... 15

8.1. Proof of Theorem 1 .. 15
8.2. Proof of Theorem 2 .. 17
8.3. Proof of Theorem 3 .. 19
8.4. Proof of Theorem 4 .. 19

9. Appendix 2: Definition of the Special Block Cipher DN (Double Net) 21
10. Appendix 3: Definition of the Hash Function HDN (Hash Double Net)..................... 21

* independent consultant, v.klima (at) volny.cz, http://cryptography.hyperlink.cz, In the paper, we present a part
of the project ST20052005017 of Czech National Security Authority
** the second version of eprint paper will contain the Appendices 2 and 3 (waiting for approval of the
publication)

1

http://cryptography.hyperlink.cz/

1. Introduction
It is well known that the most of common hash functions are vulnerable to message extension
attack [Tsu92], i.e. having given h(M) and suitable N, it is possible to determine h(M || N).
Even though this property differentiates these functions from random oracles, it was tolerated
for a long time. In 2004 and 2005, further generic problems of hash functions were
discovered. There were Joux's multicollision attack [Jou04] and Kelsey-Schneier's
multicollision attack and second preimage attack [KS05]. Note that all modern hash functions
are vulnerable to these three generic attacks ([Tsu92], [Jou04], [KS05]), resulting in their
noticeable difference from random oracles behavior. Originally, the class of hash functions
SHA-2 [SHA-2] was assumed as a possible replacement for functions MD5 and SHA-1.
However, hash function family SHA-2 is also vulnerable to all generic attacks; moreover,
their design criteria have never been published. Not surprisingly, the attacks on SHA-2 are
coming forward ([HPR04], [SKH04], [YB05], [YBP05], [MPRR06a], [MPRR06b]).

Furthermore, practical cryptanalysis of hash functions made a big progress in recent
years. Serious weaknesses were discovered in many hash functions, especially in MD5, SHA-
0 and SHA-1 ([MD5], [SHA-0], [SHA-1]). Generic attacks on the currently strongest hash
functions ([Tsu92], [Jou04], [KS05]) and practical attacks on functions from classes MD and
SHA showed a necessity of a new hash function concept proposal ([Sch04]).

At CRYPTO 1996, Bellare et al. [BCK96] proposed the constructions NMAC/HMAC.
At CRYPTO 2005 Coron et al. [CDMP05] examined NMAC construction with two oracles
and a HMAC construction with an ideal block cipher in the Davies-Meyer form. They proved
that these constructions become indifferentiable from random oracles as their block length
increases. In this paper, we prove, for the first time, quantitative estimates of resistance of
these constructions against preimage and collision attacks. It follows from Theorems 1 to 4,
that the attacker has to do roughly 2n operations for finding a preimage or 2n/2 operations for
finding a collision of NMAC/HMAC, which is the same estimate as for a random oracle. Thus
NMAC/HMAC constructions proposed in 1996 by Bellare et al. [BCK96], become practical
as well as theoretical based candidates for the new generation of hash functions.

Recently, Bellare [Bel06] showed that it is even possible to weaken traditional
requirements on a compression function in the HMAC construction. For instance, it suffices
that the compression function is a pseudorandom one for HMAC to be pseudorandom.

Since NMAC/HMAC are computationally resistant to preimage and collision attacks,
generic attacks (discovered by Joux and Kelsey-Schneier [Jou04], [KS05]) are not to be
feared of. The remaining generic attack is the message extension attack. Gauravaram et al.
[GHA06] presented this attack only for a very artificial form of the NMAC interior functions.

The second part of the paper deals with a practical construction of NMAC/HMAC
functions and a design of the SNMAC hash function SNMAC. Contemporary attacks on hash
functions in the MD and SHA families, including SHA-2, are caused by weak nonlinearities
in the block cipher employed and its key expansion ([KML02], [BDK03], [HKK03],
[KKH04], [SKH04], [KKL04], [BDK05], [HKL05], [KBP05], [MPRR06a], [MPRR06b],
[YWYP06], [BDK07]). To avoid modern attacks, hash functions should remove these weak
functions from their design and replace them by a contemporary block cipher technology
[Bih05]. By the word technology, we mean several well-established and proven principles and
building blocks of block ciphers. If we use this technology, we obtain a hash function as on
Fig. 1.

2

http://eprint.iacr.org/2005/327.pdf

hash
(m)

m1

h0

m2

h1

mL

hL-1 hL

K bits

n bits

K bits K bits

n bits n bitsn bits n bits

a
bl

oc
k

ci
ph

er
te

ch
no

lo
gy

a
bl

oc
k

ci
ph

er
te

ch
no

lo
gy

a
bl

oc
k

ci
ph

er
te

ch
no

lo
gy

a
bl

oc
k

ci
ph

er
te

ch
no

lo
gy

Fig. 1: Hash function based on block cipher technology

We show that block ciphers should be used in hash functions in another way than we

have seen so far. We call them special block ciphers (SBC) and we formulate their properties.
This new cryptographic primitive surpasses the classical conception of a block cipher. The
basic property of SBC is that an attacker can fully control its key. The block ciphers have not
been designed with this requirement, yet. Therefore, contemporary block ciphers are not too
suitable for being used in hash functions. We have to subordinate the design of these block
ciphers to the aforesaid new demand that the attacker has full control over the plaintext and
the key. SBC is not only a theoretical conception, a practical example of it is given in
Appendix 2 and [Kli06b].

NMAC/HMAC security proofs are based on the facts that f and g are independent
random oracles (in NMAC) and E is an ideal block cipher (in HMAC). If we dispose of a
special block cipher, we can use it directly as a random oracle in the NMAC construction
(Fig. 3), which is more general than HMAC construction (Fig. 4). We call this construction
SNMAC (Special NMAC) according to the usage of the special block cipher in the NMAC
model. Note that HMAC model uses a classical block cipher. If we replaced it by a special
block cipher in a meaningful way, we would obtain SNMAC also. So SNMAC construction is
a kind of trade-off between HMAC and NMAC. We will get it from below by "strengthening"
HMAC (using a special block cipher instead of classical one) or from above by "weakening"
NMAC (using a special block cipher instead of ideal random oracles).

We propose the SNMAC conception as a candidate for the new generation of hash
functions. It is computationally resistant against preimage and collision attacks, in the limit it
is indifferentiable from a random oracle and its construction enables variable designs using
various SBC. SNMAC uses the special block cipher in the compression function in a special
way, as prescribed the expression hi = SBChi-1 || mi(Const0). It exploits the fact that for decades
the block ciphers were designed in such a way that it was computationally infeasible to
determine the encryption key from the knowledge of any amount of plaintexts and
ciphertexts. Consequently, the construction SNMAC is protected against preimage attack
inherently, as the preimage of a compression function corresponds to the key of SBC.
Furthermore, the construction uses the property that SBC with a fixed plaintext and a variable
key behaves as a random oracle.

The paper is organized as follows: In Section 2, concepts of NMAC and HMAC are
defined. In Section 3, the main theorems about security of NMAC/HMAC are presented. In
Section 4, new concepts of block ciphers and hash functions, SBC and SNMAC, are
introduced. Examples of instances of SBC and SNMAC are presented in Section 5. We
conclude in Section 6. Proofs of main theorems are presented in Appendix 1. Appendices 2

3

and 3 contain the definition of a special block cipher DN (Double Net) and a hash function
HDN (Hash Double Net) as a SNMAC construction based on DN.

2. Definitions of NMAC and HMAC
Basic construction. In practice, we meet the necessity to hash messages in parts - for
instance, getting a message as a sequence from the communication channel and not having
enough memory to save the whole stream. Let us imagine the hash function as a finite
automaton. After processing a part of the message, we obtain some internal state of the
automaton, which is called a context in the case of hash function. This context and the next
part of the message is the input into the next step of the automaton. The starting state of the
automaton we call initializing value. Thus, we obtain the basic model based on using the
compression function f (Fig. 1). From the natural requirement that the compression function is
defined for the constant input width, we obtain the necessity of message padding and its
splitting into blocks with the same length. As a result, we obtain the classical Merkle-
Damgard's model of an iterative hash function, which is the principle of all modern hash
functions [Mer89] [Dam89].

f

a part of the
message

K
bits

n bitsan old context a new contextn bits

Fig. 2: An iterative hash function

Unfortunately, it is exactly this model that has those three generic weaknesses; independently
on the content of the compression function f. Especially, it enables us to find multicollisions
and multi-preimages in an easier way than in the case of a random oracle ([Jou04], [KS05]).
However, we cannot leave the natural construction based on the iterative principle ([Mer89],
[Dam89], [BCK96]). Therefore, we have to put up with the fact that the hash function of the
new generation will not be theoretically resistant to multicollision and multi-preimage attacks.
Appropriate defense should be here their computational complexity. We have to design these
functions in such a way that the attacks would demand too many operations. In the
construction on Fig. 3 and 4, the final conversion functions are used. This is a precaution
against the third generic attack through the message extension. It will not avoid the attack
theoretically [GHA06], but it will make it practically negligible. It will not be easy to use
h(M) for computing h(M || N) as the functions f and g are different (the case of NMAC). The
computation of h(M) ends by operation g, whereas in computing h(M || N) there is operation f
used on its place. When we use two random oracles f and g, we obtain the construction
NMAC (Fig. 3) according to [BCK96], [CDMP05]. If we build these oracles using a block
cipher for instance in the Davies-Meyer form [MMO85], we will obtain construction HMAC
(Fig. 4) according to [BCK96], [CDMP05]. Note that formally this definition of HMAC is a
little different from the standardized one [RFC2104].

4

NMAC
(m)

f

m1

h0
f

m2

h1
f

mL

hL-1 ghL

K bits

n bits

K bits K bits

n bits n bitsn bits n bits

Fig.3: Definition of hash function NMAC (cf. [BCK96], [CDMP05])

f HMAC
(m)f

NULL m1

h0IV
f

m2

h1
f

mL

hL-1

padding
(K-n)

zero bits

E

K

hi-1
Ef

hi hi-1 hi

K

K
bits

n bits n bits

K
bits

n bits

=

hL

hL_pad

K
bits

K
bits

K
bits

n bitsn bits

key

Fig. 4: Definition of hash function HMAC (cf. [BCK96], [CDMP05])

In both HMAC and NMAC models, we suppose that the message is padded (by bit 1, zero
bits, length of the original message) to blocks of the same length of K bits, similarly as in the
case of SHA-2.

3. Security of Hash Functions HMAC and
NMAC

In this section, we present theorems on HMAC and NMAC resistance against preimage and
collision attacks. Theorems 1 to 4 contain quantitative estimates of probabilities of finding a
collision or a preimage, as a function of the number of operations at the attacker's disposal.
The estimates are very tight, since the lower and upper boundaries are of the same order.
Proofs of Theorems 1 to 4 are presented in Appendix 1.

5

It follows from Theorems 1 to 4, that the attacker has to do roughly 2n/2 operations for finding
a collision and roughly 2n operations for finding a preimage. Therefore, the hash functions
HMAC and NMAC behave as random oracles in these situations.

In the following, we will use a usual definition of the black-box model of a block cipher
according to [BRS02].

3.1. Theorems on HMAC security
Let us denote BC(K, n) the set of all block ciphers E, which have K bits key and n bits block.
Let E be a randomly chosen block cipher from the set BC(K, n), i.e. E BC(K, n), where
the symbol M denotes a random choice of an object from the set M.

⎯⎯←$

⎯⎯←$

Black-box model ([BRS02], p. 322). Our model is the one dating to Shannon [S49] and used
in [W84], [KR96], [EM91]. Let us fix a key length K and a block length n of a block cipher E.
An adversary A is given an access to oracles E and E-1

, where E is a random block cipher E:
{0, 1}K x {0, 1}n → {0, 1}n and E-1 is its inverse. That is, each key k∈{0, 1}K denotes a
randomly selected permutation Ek = E(k, *) on {0, 1}n, and the adversary is given oracles E
and E-1

. The latter one, on input (k, y), returns the element x such that y = Ek(x).
A_E_E-1(σ) denotes the algorithm chosen according to a parameter σ. Even though we will
assume HMAC with K ≥ n, some proofs are still valid for K < n, as well. For the final
operation in HMAC, it is necessary to pad n bits long variable hL to K bits long value. We
denote this operation as hL_pad, which means padding hL by K - n zero bits. We denote
HMACE (or shortly HMAC) the hash function HMAC based on a block cipher E according to
Fig. 4.

Conventions ([BRS02], p. 328). For the remainder of this paper, we assume the following
significant conventions. First, an adversary does not ask an oracle query for which the
response is already known; namely, if A asks a query Ek(x) and this returns y, then A does not
ask a subsequent query of Ek(x) or E-1

k(y); and if A asks E-1
k(y) and this returns x, then A does

not ask a subsequent query of E-1
k(y) or Ek(x). Second, when a (collision-finding) adversary A

for HMAC outputs M and M´, adversary A has already computed HMAC(M) and HMAC(M´),
in the sense that A has made the necessary E or E-1 queries in all iterations during evaluation
HMAC(M) and HMAC(M´). Similarly, when an (inverting adversary) A for HMAC outputs a
message M, we assume that A has already computed HMAC(M), in the sense that A has made
the necessary E or E-1 queries in all iterations during evaluation HMAC(M).

3.2. HMAC preimage resistance
Theorem 1. HMAC preimage resistance.
Let Pr_E_σ = Pr[E BC(K, n); σ {0, 1}⎯⎯←$ ⎯⎯←$ n; M A_E_E⎯⎯← -1(σ): HMACE(M) = σ]
be the probability of the event that for a randomly chosen hash value σ and a randomly
chosen block cipher E the adversary A_E_E-1 (using the algorithm A_E_E-1(σ)) will obtain
the value of the message M, where HMACE(M) = σ, i.e. he or she will find a preimage for σ.
Let us denote Adv_inv_HMAC[n](q) = Max {Pr_E_σ} where the maximum is taken over all
adversaries A_E_E-1(σ) that ask at most q oracle queries (i.e., E queries plus E-1 queries).
Choose n ∈ N and K ≥ n. Then for any 1 ≤ q < 2n

.2/0.1 (q) AC[n]Adv_inv_HM2/3.0 nn qq ∗≤≤∗

6

3.3. HMAC collision resistance
Theorem 2. HMAC collision resistance.
Denote the advantage of A in finding collisions in HMAC as the real number
Adv_coll_HMAC[n](A) = Pr[E BC(K, n); (M, M´) A: M´ ≠ M & HMAC⎯⎯←$ ⎯⎯←$ E(M) =
HMACE(M´)]. For any 1 ≤ q we define Adv_coll_HMAC[n](q) =
Max{Adv_coll_HMAC[n](A)} where the maximum is taken over all adversaries A_E_E-1 that
ask at most q oracle queries (i.e., E queries plus E-1 queries). Choose n ∈ N and K ≥ n ≥ 3.
Then for any 1 < q ≤ 2n/2

.2/)1(5.1 MAC[n](q)Adv_coll_H2/)2(158.0 nn qqqq −∗≤≤−∗

3.4. Theorems on NMAC security
Let us denote RO(p, q) the set of all random oracles with p bits long input and q bits long
output. We denote NMACf,g or shortly NMAC such a construction of NMAC defined above
that uses random oracles f ∈ RO(K + n) and g∈ RO(n, n). Let A_f_g denotes an adversary
(any algorithm), which has an access to oracles f and g. A_f_g(σ) denotes the algorithm
chosen according to a parameter σ.

Conventions (cf. [BRS02], p. 328). In the case of NMAC, we assume the following
significant conventions, similar to HMAC. When a (collision-finding) adversary A for NMAC
outputs M and M´, the adversary A has already computed NMAC(M) and NMAC(M´) in such
sense that A has made the necessary f and g queries in all iterations during the evaluation of
NMAC(M) and NMAC(M´). Similarly, when an (inverting adversary) A for NMAC outputs a
message M, we assume that A has already computed NMAC(M) in such a sense that A has
made the necessary f and g queries in all iterations during the evaluation of NMAC(M).

3.5. NMAC preimage resistance
Theorem 3. NMAC preimage resistance.
Let Pr_f_g_σ = Pr[f RO(K + n, n); g RO(n, n); σ {0,1}⎯⎯←$ ⎯⎯←$ ⎯⎯←$ n; M
A_f_g(σ): NMAC(M) = σ] be the probability of the event that for a randomly chosen hash
value σ and a randomly chosen oracles f and g the adversary A_f_g (using the algorithm
A_f_g(σ))obtains the value of the message M, such that NMAC(M) = σ, i.e. he or she finds a
preimage for σ. Let us denote Adv_inv_NMAC[n](q) = Max {Pr_f_g_σ} where the
maximum is taken over all adversaries A_f_g_σ that ask at most q oracle queries (i.e., f
queries plus g queries). Choose n ∈ N. Then for any 1 ≤ q < 2

⎯⎯←

n
.2/0.1(q) AC[n]Adv_inv_NM2/ 0.3 nn qq ∗≤≤∗

3.6. NMAC collision resistance
Theorem 4. NMAC collision resistance.
Denote the advantage of A in finding collisions in NMAC as the real number
Adv_coll_NMAC[n](A) = Pr[f RO(K + n, n); g RO(n, n); (M, M´) A: M´ ≠
M & NMAC(M) = NMAC(M´)]. For any 1 ≤ q define Adv_coll_NMAC[n](q) = Max
{Adv_coll_NMAC[n](A)} where the maximum is taken over all adversaries A_f_g that ask at
most q oracle queries (i.e., f queries plus g queries). Choose n ∈ N. Then for any 1 < q ≤ 2

⎯⎯←$ ⎯⎯←$ ⎯⎯←$

n/2
.2/)1(5.0(q) MAC[n]Adv_coll_N2/)2(158.0 nn qqqq −∗≤≤−∗

7

4. A New Concept of SBC and SNMAC
In this section, we introduce a concept of the special block cipher. Basing on the concept, we
will define the hash function SNMAC. Recall the reasons that caused the problems of
contemporary hash functions from MD and SHA families:

• block ciphers, used in compression functions, are processing the key and plaintext in
fundamentally different ways (inhomogeneously),

• block ciphers, used in compression functions, enable controlling changes of one input
(a plaintext or a key) by changes of the other one,

• component functions enable propagation of differences from inputs to differences in
outputs,

• component functions are weakly nonlinear, there are highly probable linear relations
between their inputs and outputs.

Biham [Bih05] proposed to start using block cipher technology in hash functions. We mean
such building blocks that are strongly nonlinear and resistant to differential and linear
cryptanalysis. So, let us assume that in the compression function f, hi = f(hi-1, mi), we will use
a block cipher. We can even use it several times, if necessary.

In contemporary attacks on hash functions, the changes in hi-1 and mi are made
simultaneously in such a way that the appropriate differences in hi occur. Since the function f
is built from a block cipher and the attacker is able to manipulate with all variables (hi-1, mi) of
f, he or she is able to manipulate with all variables, which enter the block cipher. Thus, in the
case of hash functions, there is an extra situation that the attacker has a chance to manipulate
both key and plaintext of the block cipher being used. This ability is independent on the way
in which the block cipher is incorporated in the hash function.

There have been many ways studied on how to use block ciphers in the constructions
of hash functions. Nevertheless, any classical block cipher has never been designed under the
assumption that the attacker would have the chance to manipulate with its key howsoever.
Conversely, the key is usually processed by weaker functions than the data entry in majority
of modern ciphers. For instance, in the case of TripleDES it is a linear function, in the case of
AES it is a weak nonlinear function.

Homogeneity. To guarantee the impossibility of using weaknesses either in the data entry or
in the key entry processing, we demand all variable bits of used block cipher to be processed
with the equal quality and in a similar way. We call this property the homogeneity. We also
demand homogeneity for the output bits of the block cipher. An example of homogeneously
processed input and output bits could be for instance a random substitution box (a
permutation), despite of the fact that the output bit functions could be very different. Classical
block ciphers almost never fulfill the requirement of homogeneity. Almost all of the modern
block ciphers process the key by weaker functions than the functions, which process the data
entry. On the other hand, the set of key bits and the set of data bits are both processed
separately homogeneously almost every time. Thus we can achieve the requirement of
homogeneity by setting the key or the data of a classical block cipher to a constant, whereas
the remaining entry will be processed homogeneously.

Special block cipher (SBC) and a special NMAC (SNMAC). Let us achieve the property of
homogeneity of a block cipher (E), used in a compressing function (f), by leading all input
bits X = hi-1 || mi of a compressing function (i.e. data block mi and a context hi-1) to the
plaintext and setting the key as a constant: f(X) = EConst0(X). The compression function f
should be one-way to prevent preimage attack, however, this requirement is not satisfied by

8

our construction. On the other hand, for decades, the block ciphers have been developed in
such a way that it is computationally infeasible to derive the key from the knowledge of
plaintext-ciphertext pairs. If we use this fact, we naturally obtain the construction f(X) =
EX(Const0), i.e. all variable bits lead to the key entry of the block cipher and the block cipher
is used only with a constant plaintext. Therefore, further on, we will assume only the
construction f(X) = EX(Const0). In this case, we call E a special block cipher. This name is
appropriate, because E is used only with two different constant plaintexts (Const0 for the
oracle f and Const1 for the oracle g). On the basis of SBC and NMAC we can now define the
hash function SNMAC, as is illustrated in Fig. 5.

SNMAC
(m)

K - n
bits

m1

h0n bits

K - n
bits

ke
y

E

CO
NST

0

K - n
bits

m2

h1 E

CO
NST

0

paddi
ng

K - n
bits

NULL

hL E

CO
NST

1

K - n
bits

mL

hL-1 E

CO
NST

0

n
bits

n
bits

m1 m2 mL NULL
ke

y

ke
y

ke
y

Fig. 5: Definition of SNMAC, based on SBC and NMAC

The concept of the special block cipher is new, so that its definition could be further refined.
For the security proofs of SNMAC we will need the property that E: {0, 1}K x Const0 → {0,
1}n : (k, Const0) → y = Ek(Const0) = f(k) and E: {0, 1}K x Const1 → {0, 1}n : (k, Const1) → y
= Ek(Const1) = g(k) are random oracles with respect to the variable key. For f and g to be
high-quality functions for any choice of constants Const0 a Const1, we will demand that E: {0,
1}K x {0, 1}n → {0, 1}n : (k, x) → y = Ek(x) is high quality as a whole mapping with a variable
plaintext and a variable key.

All differential and linear attacks, which are successful in hash functions, are in the case of
SBC transformed into differential and linear attacks using the key. Therefore, contrary to
contemporary block ciphers, in the case of SBC we will especially demand the resistance
against differential and linear attacks, leading from the key entry. We can extend this demand
also to the data entry (as it was variable) and to a combination of key and data entry. So, we
demand that there are no differential nor linear relations between variables (k, x) and y = Ek(x)
with usable probability. In other words, the requirements on SBC are the same as on
contemporary block cipher plus the necessity of stronger processing of the key. The key in
SBC should be processed with the same cryptographic quality as the plaintext in classical
block ciphers. So, what can we say about SBC?

9

A special block cipher E:
• processes the key on the same quality level as the data entry,
• processes all key bits on the same quality level (homogeneously),
• in opposite to classical block ciphers it will be natural to use it with the key length

usually many times greater then the block length, e.g. K = 4096, resp. 8192 and n =
256, resp. 512,

• is designed using block cipher technology,
• is not primarily designed for data encryption,
• it is used in a hash function with a constant plaintext, all variable bits enter E through

the key entry,
• assuming the SBC has also a variable plaintext, it should be cryptographically strong

classical block cipher,
• the attacker is able to manipulate with the key in any way.

The definition of SBC is not complete yet, further research is necessary.

Definition. Hash function SNMAC. The hash function SNMAC is an iterative hash
function of the NMAC type ([BCK96], [CDMP05]), which uses a special block cipher E with
n bits long block and K bits long key. It has a compression function f and a final conversion g,
where
f: {0, 1}K → {0, 1}n : X → EX(Const0),
g: {0, 1}n → {0, 1}n : X → EX || NULL(Const1),
K ≥ n, Const0 and Const1 are different constants and NULL denotes the string of K - n zero
bits. Hashing of a message m has three steps.
Step 1. Padding
We pad the message m by one bit 1, then by the smallest number (allowing an empty string)
of bits 0 and by 128bit long number (which represents the length of the original message m in
bits) in such a way, that the length of the padded message is the smallest (L) multiple of the
number K - n, where L is an appropriate natural number. We divide this padded message into
L blocks of K - n bits, m = m1 || ... || mL-1 || mL.
We define (Fig. 4) h0 as a constant (initializing value).
Step 2. Iterations
hi = f(hi-1 || mi), i = 1, ..., L,
Step 3. Final conversion
SNMAC() = g(hL).

The attacker's goal. The encryption key was the main goal in the case of the classical block
ciphers. In the case of the special block cipher, the attacker has even the ability to manipulate
with the key. So there is a question what is its goal now. Because hash function SNMAC is
based on SBC, the attacker's goal will be a preimage or a collision of SBC. More generally,
the goal will be the ability to control the relationship between the input and the output of the
special block cipher in any way. It could lead to finding some properties that differentiate the
hash function from random oracle. We will have to fix the classical block cipher. For the
classical block ciphers, any manipulation with the key is quite an unnatural requirement. They
are not prepared for it and don't have the defensive precautions against it. The key expansion
is usually weak, incomparable with the data processing. Therefore, the key processing should
be strengthened to the level of processing of the plaintext in contemporary block ciphers.

Why is it not desirable to use a high-quality classical block cipher in the hash function
construction? From the work of Coron et al. [CDMP05] and Theorems in Section 3, it
follows that the NMAC and HMAC constructions are computationally secure against collision

10

and preimage. Would it not be therefore sufficient to use a high-quality classical block cipher
in the HMAC construction? The answer is negative. The disadvantage of current block
ciphers is that they process the key and data alternatively (by the different way),
inhomogeneously and with different cryptographic strength. This inhomogeneity was used to
attack the block ciphers and the hash functions (see for instance [BDK03], [BDK05],
[HKL05], [KBP05], [KHL04], [KKH04], [KLS04], [KML02], [SKH04], [Kli06a],
[YWYP06] and currently [BDK07]). From the present attacks on hash functions, it follows
that the values of data and the contexts have the same cryptographic value and, therefore, they
should be processed homogeneously (with the same quality). No one classical block cipher
has this property. Also, none of the classical block ciphers was built with the assumption that
the attacker has full control over the key. Thus the SBC design will be different from the
classical block ciphers, even if it can use their proven building blocks.

5. A Concrete Instance of SBC and
SNMAC

The SNMAC construction based on SBC is general and it enables to use various instances of
SBC. As an instance of a SBC, we proposed the algorithm DN (Double Net). Using this
algorithm in the SNMAC construction, we obtained the hash function called HDN (Hash
Double Net). The descriptions of DN and HDN are presented in Appendices 2 and 3. Source
codes, test samples, etc. will be available on [Kli06b]. DN has the key length 8192 bits and
the block length 512 bits. HDN has 512-bits code and the unoptimized speed of hashing is 3 –
4 times slower than for SHA-512. The lower speed of HDN with respect to SHA-512 is
comprehensible after a comparison of both functions. SHA-512 uses weaker internal
nonlinear functions, whereas HDN integrates block cipher technology and a large security
margin.

6. Conclusion
Generic problems of hash functions showed a need for a new hash function concept proposal.
New security proofs enable to use the constructions NMAC/HMAC, which were proposed by
Bellare et al. in 1996 [BCK96]. In this paper, we, for the first time, prove quantitative
estimations of resistance of these constructions against preimage and collision attacks. It also
follows from here that they are computationally resistant to multicollisions and multi-
preimages, as well. Coron et al. [CDMP05] at CRYPTO 2005 showed that NMAC/HMAC
are random oracles in the limit. Together with the quantitative proofs proposed, this gives
very good guarantees to security of these constructions.

The second part of the paper deals with the practical construction of functions
NMAC/HMAC and the proposals of hash function SNMAC on the basis of a block cipher.
We show that block ciphers should be used in hash functions in another way than it has been
so far. We call them special block ciphers (SBC) and we formulate their properties. This new
cryptographic primitive surpasses the classical conception of block ciphers. The basic
property of SBC is that an attacker has full control over its key. With this requirement the
block ciphers have not been designed yet. Therefore, contemporary block ciphers are not too
suitable for being used in hash functions.

We propose a new class of hash functions called SNMAC as NMAC construction
using a special block cipher. This concept is a candidate for the new generation hash
functions. It is computationally resistant to preimage and collision attacks, it is a random

11

oracle in the limit and it enables various proposals using different instances of the special
block cipher.

As an example we also propose a special block cipher DN (Double Net) and define a
hash function HDN (Hash Double Net) as the SNMAC construction based on DN.

Acknowledgements. I am grateful to Tomáš Rosa for many helpful comments and inspiring
suggestions on the previous versions of the paper.

7. References
[BCK96] M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message
authentication. Advances in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science
Vol. 1109, pp. 1-15, Springer-Verlag, 1996.

[Bel06] M. Bellare. New Proofs for NMAC and HMAC: Security without Collision-
Resistance. To be published, Advances in Cryptology – CRYPTO ’06, Lecture Notes in
Computer Science Vol. 4117, Springer-Verlag, 2006, Cryptology ePrint Archive, Report
2006/043.

[BCJ05] E. Biham, R. Chen, A. Joux, P. Carribault, Ch. Lemuet and W. Jalby. Collisions of
SHA-0 and Reduced SHA-1. Advances in Cryptology –EUROCRYPT 2005, Lecture Notes in
Computer Science Vol. 3494, pp. 36–57, Springer-Verlag, 2005.

[BDK03] E. Biham, O. Dunkelman, and N. Keller. Rectangle Attacks on 49-Round
SHACAL-1, FSE 2003, Lecture Notes in Computer Science Vol. 2887, pp. 22-35, Springer-
Verlag, 2003.

[BDK05] E. Biham, O. Dunkelman, and N. Keller. Related-Key Boomerang and Rectangle
Attacks, Advances in Cryptology – EUROCRYPT 2005, Lecture Notes in Computer Science
Vol. 3494, pp. 507–525, Springer-Verlag, 2005.

[BDK07] E. Biham, O. Dunkelman, and N. Keller. A Simple Related-Key Attack on the Full
SHACAL-1, to be published, CT-RSA 2007, RSA Conference 2007, Cryptographers' Track,
February 5-9, 2007, Moscone Center, San Francisco, USA.

[Bih05] E. Biham: Recent advances in hash functions and the way to go, Conference on Hash
Functions (Ecrypt Network of Excellence in Cryptology), June 23-24, 2005, Przegorzaly
(Krakow), Poland, http://www.ecrypt.eu.org/stvl/hfw/Biham.ps.

[BRS02] J. Black, P. Rogaway, T. Shrimpton. Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. Advances in Cryptology – CRYPTO 2002,
Lecture Notes in Computer Science Vol. 2442, pp. 320-335, Springer-Verlag, 2002. Extended
version: Cryptology ePrint Archive, Report 2002/066, http://eprint.iacr.org/2002/066.

[CDMP05] J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited:
how to construct a hash-function. Advances in Cryptology – CRYPTO 2005, Lecture Notes in
Computer Science Vol. 3621, pp. 430 - 448, Springer-Verlag, 2005.

12

http://www.ecrypt.eu.org/stvl/hfw/Biham.ps
http://eprint.iacr.org/2002/066

[Dam89] I. Damgard. A Design Principle for Hash Functions. Advances in Cryptology -
CRYPTO 1989, Lecture Notes in Computer Science Vol. 435, pp. 416–427, Springer-Verlag,
1990.

[EM91] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom
permutation. In Advances in Cryptology – ASIACRYPT ’91, Lecture
Notes in Computer Science Vol. 739, pp. 210–224. Springer-Verlag, 1992.

[GHA06] P. Gauravaram, S. Hirose and S. Annadurai. An Update on the analysis and design
of NMAC and HMAC functions. To be published in International Journal of Network
Security

[HPR04] P. Hawkes, M. Paddon, and G. G. Rose. On Corrective Patterns for the SHA-2
Family. Cryptology ePrint Archive, Report 2004/207, 2004.

[HKK03] S. Hong, J. Kim, G. Kim, J. Sung, C. Lee and S. Lee. Impossible Differential
Attack on 30-Round SHACAL-2, INDOCRYT 2003, Lecture Notes in Computer Science
Vol. 2904, pp. 97-106, Springer-Verlag, 2003.

[HKL05] S. Hong, J. Kim, S. Lee and B. Preneel. Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192, FSE 2005, Lecture Notes in Computer Science Vol.
3557, pp. 368–383, Springer-Verlag, 2005.

[Jou04] A. Joux. Multicollisions in Iterated Hash Functions. Advances in Cryptology -
CRYPTO 2004, Lecture Notes in Computer Science Vol. 3152, pp. 306–316, Springer-
Verlag, 2004.

[KML02] J. Kim, D. Moon, W. Lee, S. Hong, S. Lee, and S. Jung. Amplified Boomerang
Attack against Reduced-Round SHACAL, Advances in Cryptology - ASIACRYPT 2002,
Lecture Notes in Computer Science Vol. 2501, pp. 243 - 253, Springer-Verlag, 2002.

[KBP05] J. Kim, A. Biryukov, B. Preneel, and S. Lee. On the Security of Encryption Modes
of MD4, MD5 and HAVAL, ICICS 2005, Lecture Notes in Computer Science Vol. 3783, pp.
147-158, Springer-Verlag, 2005.

[KK05] J. Kelsey and T. Kohno.Herding Hash Functions and the Nostradamus Attack,
Cryptographic Hash Workshop, held in NIST, Gaithersburg, Maryland, 2005, IACR
Cryptology ePrint Archive, Report 2005/281, 2005.

[KKH04] J. Kim, G. Kim, S. Hong, S. Lee and D. Hong.The Related-Key Rectangle Attack-
Application to SHACAL-1, ACISP 2004, Lecture Notes in Computer Science Vol. 3108, pp.
123-136, Springer-Verlag, 2004.

[KKL04] J. Kim, G. Kim, S. Lee, J. Lim and J. Song. Related-Key Attacks on Reduced
Rounds of SHACAL-2, INDOCRYPT 2004, Lecture Notes in Computer Science Vol. 3348,
pp. 36 - 44, Springer-Verlag, 2004.

[Kli06a] V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute, Cryptology
ePrint Archive, Report 2006/105, 18 March, 2006.

13

[Kli06b] V. Klima. SNMAC homepage http://cryptography.hyperlink.cz/SNMAC/SNMAC.html.

[KLS04] J. Kim, G. Kim, S. Lee, J. Lim and J. Song. Related-Key Attacks on Reduced
Rounds of SHACAL-2, INDOCRYPT 2004, Lecture Notes in Computer Science Vol. 3348,
pp. 36 - 44, Springer-Verlag, 2004.

[KML02] J. Kim, D. Moon, W. Lee, S. Hong, S. Lee, and S. Jung. Amplified Boomerang
Attack against Reduced-Round SHACAL, Advances in Cryptology - ASIACRYPT 2002,
Lecture Notes in Computer Science Vol. 2501, pp. 243 - 253, Springer-Verlag, 2002.

[KR96] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. Journal
of Cryptology, 14(1):17–35, 2001. Earlier version in CRYPTO ’96.

[KS05] J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Functions for Much Less
than 2n. Advances in Cryptology - EUROCRYPT 2005, Lecture Notes in Computer Science
Vol. 3494, pp. 474–490, Springer-Verlag, 2005.

[MD5] R. Rivest. The MD5 message-digest algorithm, Internet RFC 1321, April 1992.

[Mer89] R. C. Merkle. One Way Hash Functions and DES. Advances in Cryptology -
CRYPTO 1989, Lecture Notes in Computer Science Vol. 435, pp. 428–446, Springer-Verlag,
1990.

[MMO85] S. M. Matyas, C. H. Meyer and J. Oseas. Generating strong one-way functions
with cryptographic algorithm. IBM Techn. Disclosure Bull., Vol. 27, No. 10A, 1985, pp.
5658 - 5659.

[MPRR06a] F. Mendel, N.Pramstaller, C.Rechberger, and V.Rijmen. Analysis of Step-
Reduced SHA-256, to be published, FSE 2006

[MPRR06b] F.Mendel, N.Pramstaller, C.Rechberger, and V.Rijmen. The Impact of Carries on
the Complexity of Collision Attacks on SHA-1, to be published, FSE 2006

[S49] C. Shannon. Communication theory of secrecy systems. Bell Systems Technical
Journal, 28(4):656–715, 1949.

[Sch04] B. Schneier. Cryptanalysis of MD5 and SHA. Crypto-Gram Newsletter, September
2004, http://www.schneier.com/crypto-gram-0409.html#3

[SHA-0] National Institute of Standards and Technology. Secure hash standard. Federal
Information Processing Standard, FIPS PUB 180, May 1993.

[SHA-1] National Institute of Standards and Technology. Secure hash standard. Federal
Information Processing Standard, FIPS PUB 180-1, April 1995.

[SHA-2] National Institute of Standards and Technology. Secure hash standard. Federal
Information Processing Standard, FIPS PUB 180-2, August 2000.

14

http://cryptography.hyperlink.cz/SNMAC/SNMAC.html

[SKH04] Y. Shin, J. Kim, G. Kim, S. Hong and S. Lee. Differential-Linear Type Attacks on
Reduced Rounds of SHACAL-2, ACISP 2004, Lecture Notes in Computer Science Vol.
3108, pp. 110–122. , Springer-Verlag, 2004.

[Tsu92] G. Tsudik. Message authentication with one-way hash functions. ACM Computer
Communications Review, 22(5):29-38, 1992.

[W84] R. Winternitz. A secure one-way hash function built from DES. In Proceedings
of the IEEE Symposium on Information Security and Privacy, pp. 88–90. IEEE Press, 1984.

[WY05] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. Advances in
Cryptology - EUROCRYPT 2005, Lecture Notes in Computer Science Vol. 3494, pp. 19–35,
Springer-Verlag, 2005.

[WYY05a] X. Wang, H. Yu and Y. L. Yin. Efficient Collision Search Attacks on SHA-0.
Advances in Cryptology - CRYPTO ’05, Lecture Notes in Computer Science Vol. 3621, pp.
1–16, Springer-Verlag, 2005.

[WYY05b] X. Wang, Y. L. Yin and H. Yu. Finding collisions in the full SHA-1. Advances in
Cryptology - CRYPTO ’05, Lecture Notes in Computer Science Vol. 3621, pp. 17–36,
Springer-Verlag, 2005.

[YB05] H. Yoshida and A. Biryukov. Analysis of a SHA-256 Variant, SAC 2005, Lecture
Notes in Computer Science Vol. 3897, pp. 245 – 260, Springer-Verlag, 2005.

[YBP05] H. Yoshida, A. Biryukov, and B. Preneel. Some applications of the Biham-Chen
attack to SHA-like hash functions, CRYPTOGRAPHIC HASH WORKSHOP, NIST,
Gaithersburg, Maryland, USA, October 31 - November 1, 2005,
http://csrc.nist.gov/pki/HashWorkshop/2005/Oct31_Presentations/Yoshida_cameraNistHash.pdf

[YWYP06] H.Yu, X.Wang, A.Yun and S. Park. Cryptanalysis of the Full HAVAL with 4 and
5 Passes. To be published, FSE 2006.

8. Appendix 1: Proofs of Theorems
In our proofs, we will use the following lemma.
Lemma 1.
(1) for every x∈ <0, 1> it holds that 1 - e-x ≥ (1 - e-1) x,
(2) for every x∈ <0, 1> it holds that e-x ≥ 1 - x,
(3) for every x ∈ (0, 1) and q ∈ N it holds that 1 - qx ≤ (1 - x)q,
(4) for every x ∈ (0, 1) and q ∈ N it holds that (1 - x/q)q ≤ e-x.
Proof. It follows from properties of power and exponential functions.

8.1. Proof of Theorem 1
We will show that it holds . (q) AC[n]Adv_inv_HM2/3.0 ≤∗ nq
Let E be a block cipher chosen randomly from the set BC(K, n) and σ is a value chosen
randomly from the set R = {0, 1}n. It is sufficient to prove that Pr_E_σ ≥ 0.3 * q/2n for a
particular adversary A defined at our will. Let us define our adversary. The adversary A looks

15

http://csrc.nist.gov/pki/HashWorkshop/2005/Oct31_Presentations/Yoshida_cameraNistHash.pdf

for K bits long block m, for which h1 = Em(h0) xor h0 and Eh1_pad(IV) = σ. While doing this,
she asks the oracle E at most q times at all. She does not ask the oracle E-1. For every 1 ≤ i ≤
q/2 she chooses the key arbitrarily and asks the oracle E for the value of Eki(h0). She
computes yi = Eki(h0) xor h0 and obtains the value Hi = HMACE(ki) = Eyi_pad(IV) from the
oracle. If Hi = σ for some i, the adversary found preimage of hash value σ and returns M = ki
as the message. If Eyi_pad(IV) is not equal to σ for any 1 ≤ i ≤ q/2, she returns a negative
answer. From the definition of the random block cipher, it follows that if we fix the plaintext x
(here x = h0 or x = IV), then the mapping {0,1}K → {0,1}n : k → Ek(x) is a random oracle
with K bits long input and n bits long output. Therefore, {yi}1 ≤ i ≤ q contains q/2 independent
random values from the set {0, 1}n and {yi_pad}1 ≤ i ≤ q/2 is the set of q/2 independent values
from the set {0, 1}K. Under the same assumption (now x = IV), it follows that {Hi}1 ≤ i ≤ q/2 is
the set of q/2 randomly chosen values from the set {0, 1}n. The probability P that there is the
value σ in the set {Hi}1 ≤ i ≤ q/2 is equal to

,2/3.02/)1(1
2
111 11)1(2/)4(

2/
1 nnq

q

n qqeeP
n

∗≥∗−≥−≥⎟
⎠
⎞

⎜
⎝
⎛ −−= +−− +

using Lemma 1 (4), (1), and the fact that q/2n+1< 1, qed.

Now we will show that .2/*0.1 (q) AC[n]Adv_inv_HM nq≤
Let E be a randomly chosen block cipher from the set BC(K, n) and σ is a randomly chosen
value from the set R = {0, 1}n. Let A denote an adversary. It is sufficient to prove that Pr_E_σ
≤ q/2n. Even if the adversary has the best strategy, he can use only queries to oracles E and E-

1. During the activity of the adversary A, the oracle E is creating a list of records of queries
and answers (ki, xi, yi) and the oracle E-1 is creating the list of (kj, xj, yj), where the input of E is
(ki, xi) and the output is yi = Eki(xi); the input of E-1 is (kj, yj) and output is xj = E-1

kj(yj). In these
lists, we distinguish the cases xi = IV, xi ≠ IV, yj = σ, and yj ≠ σ. Altogether we have
q1 queries to E of the type (ki, IV, yi),
q3 queries to E of the type (ki, ≠IV, yi),
q2 queries to E-1 of the type (kj, xj, σ),
q4 queries to E-1 of the type (kj, xj, ≠σ),
where q1 + q2 + q3 + q4 ≤ q.
If the algorithm A is successful, then there is at least one record, where yi = σ in the list (q1) or
there is at least one record, where xj = IV in the list (q2). It is unnecessary to examine queries
in the lists (q3) and (q4). From the definition of the random block cipher it follows that if we
fix the plaintext x (here x = IV), then the mapping {0,1}K → {0,1}n : k → Ek(x) is a random
oracle with K bits long input and n bits long output. Therefore the set {yi}1 ≤ i ≤ q1 from the list
(q1) is the set of q1 random values from the set {0, 1}n. From the definition of random block
cipher it follows that if we fix the ciphertext y (here y = σ for any σ) then the mapping {0,1}K
→ {0,1}n : k → E-1

k(σ) is a random oracle with K bits long input and n bits long output.
Therefore, the set {xj}1 ≤ j ≤ q2 from the list (q2) is the set of q2 randomly chosen values from
the set {0, 1}n. The probability P that there is the value σ in the set {yi}1 ≤ i ≤ q1 or that there is
a value IV in the set {xj}1 ≤ j ≤ q2 is equal to

.2/
2
111

2
11

2
111)3(

21
n

q

n

q

n

q

n qP ≤⎟
⎠
⎞

⎜
⎝
⎛ −−≤⎟

⎠
⎞

⎜
⎝
⎛ −∗⎟

⎠
⎞

⎜
⎝
⎛ −−=

We used here Lemma 1 (3). This finishes the proof of Theorem 1.

16

8.2. Proof of Theorem 2
We will show that it holds .MAC[n](q)Adv_coll_H2/)2(158.0 ≤−∗ nq
It is sufficient to prove that for a particular
adversary A defined at our will. Let us define her. The adversary A looks for colliding
messages x

nqq 2/)2(158.0 MAC[n](A)Adv_coll_H −∗≥

i ≠ xj, which contain only one K bit long block including the padding:
yi = Exi(h0) and E(yi ⊕ h0)_pad(IV) = σ and
yj = Exj(h0) and E(yj ⊕ h0)_pad(IV) = σ for some σ.
Note that the collision can occur

(1) after the encryption of h0 (yi = yj) or
(2) in the second step after the encryption of IV by different keys (yi ⊕ h0)_pad and (yj ⊕

h0)_pad.
Procedure of the adversary corresponds to these two possibilities. The adversary asks the
oracle E at most q times at all. She makes q1 queries for the encryption of the value h0 and q2
queries for the encryption of the value IV, q1 = q2 = q/2. For i, 1 ≤ i ≤ q1, the adversary A
chooses K bits long keys ki arbitrarily and will obtain the values yi = Eki(h0) from the oracle,
what creates the list (ki, h0, yi). If there are two equal values yi and yj in the third position, she
obtains the collision for messages ki and kj. If not, the list contains q1 different random values
in the first item and the adversary continues by creating the second list. For every 1 ≤ i ≤ q2
she takes values yi from the first list and from the oracle E she obtains values Yi = E(yi ⊕

h0)_pad(IV). She creates the list ((yi ⊕ h0)_pad, IV, Yi)1 ≤ i ≤ q2. If there are two equal values Yi
and Yj in the third position, she will obtain the collision for messages ki and kj. If not, the
adversary returns a negative response (collision not found). Let us denote p the probability
that the adversary A will find a collision by this procedure, and P that she does not. From the
definition of the random block cipher, it follows that if we fix the plaintext x (here x = h0 and
x = IV), then the mapping {0,1}K → {0,1}n : k → Ek(x) is a random oracle with K bits long
input and n bits long output. Therefore, {yi}1 ≤ i ≤ q1 is the set of q1 random values from the set
{0, 1}n and {(yi ⊕ h0)_pad}}1 ≤ i ≤ q1 is the set of q1 values from the set {0, 1}K

. Under the same
assumption {Yi}1 ≤ i ≤ q2 is the set of q2 random values from the set {0, 1}n. The probability
that the adversary does not find a collision either in q1 steps (1) or in q2 steps (2) is

() ()
.

2
1

2
1

2/)4/)2((2/)12(22/)11(1

11

1

12

1

2/2/)2(
11

1

12

1
11 nnn

nn

qqqqqq

q

i

q

i

ii
q

i

q

i
nn

ee

eeiiP

−−−−−−

−

=

−

=

−−
−

=

−

=

==

=∗≤⎟
⎠
⎞

⎜
⎝
⎛ −∗⎟

⎠
⎞

⎜
⎝
⎛ −=

++

∏ ∏∏ ∏

We used here the fact (2) from Lemma 1 and that q1 = q2 = q/2. The probability that there will
be a collision, is

 We used here
the fact (1) from Lemma 1, i.e. 1 - e

.2/)2(*158.02/)4/)2((*)1(11 1)1(2/)4/)2((nnqq qqqqeePp
n

−≥−−≥−≥−= −−−

-x ≥ (1-e-1)x for all 0 ≤ x ≤ 1. In the role of x, there is the
expression x = (q(q-2)/4)/2n. According to our assumptions, we have q ≤ 2n/2, so that x ≤ 1/4,
i.e. x ≤ 1 and the treatment was correct. The proof is finished.

Now we will show that .2/)1(5.1 MAC[n](q)Adv_coll_H nqq −∗≤
We have to prove for any adversary A. Even if the
adversary has the best strategy, she can use only queries to oracles E and E

nqq 2/)1(5.1 MAC[n](A)Adv_coll_H −∗≤
-1. We can model

17

the activity of the adversary A by her queries. We create the table T of records (x, h, y, h ⊕ y),
where the adversary chooses the key x and one of the values y or h. She will obtain y = Ex(h)
from the oracle E or h = E-1

x(y) from the oracle E-1. The fourth item (h ⊕ y) is for an
informative purpose only. The table T can have at most q records. Because the attacker will
not ask the oracles if she knows the answer, we can assume that there are no two records with
the same values (x, h) or (x, y). The attack does not succeed if q records fulfill the table. The
attacker is searching for colliding messages M ≠ M´, which have several K bits long blocks
including the padding. The messages can differ in a number of blocks. If there is a collision,
there are two cases:

• Internal collision. In this case, the collision occurred before the final operation.
• Final collision. In this case, the collision occurred after the final operation and it has

occurred nowhere before the final operation.
Internal collision
Let us elaborate the internal collision first. In this case, there has to be created a record (xi, hi-

1, yi, hi-1 ⊕ yi) in the table T during processing the first message and a record (xj, hj-1, yj, hj-1 ⊕
yj), during processing the second message, where i ≠ j are indexes of oracle’s records (they are
not indexes of blocks of messages), (xi, hi-1) ≠ (xj, hj-1) and hi-1 ⊕ yi = hj-1 ⊕ yj. For a fixed i =
2, ..., q, let us denote Ci the event that there is an index j, 1 ≤ j < i such that j-th and i-th
records in the table have the same values in the fourth position. Denote Pr[Ci] probability of
this event. Let us denote t the number of records j in the table T, 1 ≤ j < i, for which xj = xi in
the first position and hj-1 ≠ hi-1 in the second position. It holds 0 ≤ t ≤ i - 1. In these records,
we have the same key (xi) and t different values h in the second position. So we already have
recorded t different values Exi(h) in the third position for a given key xi and for t different
values h. Therefore the answer yi = Exi(hi) on i-th query (hi) the oracle chooses (randomly)
from the set of 2n - t values. Because hi is a constant, the expression yi ⊕ hi is also taken
randomly from the set of 2n - t values. The probability that it equals to one value from the set
of (at most) (i - 1) values in the fourth position of the table T, is less or equal to (i - 1)/ (2n - t).
So it holds We used the fact that from the
definition of the random block cipher it follows that for any fixed k∈{0,1}

)).1(2/()1()2/()1(]Pr[Ci −−−≤−−≤ iiti nn

K the mapping
{0,1}n → {0,1}n : x → Ek(x) is a random permutation on {0,1}n. Because i ≤ q ≤ 2n/2 ≤ 2n-1
+1, it holds . Let P1

i 2/)1())1(2/()1(]Pr[C −−≤−−−≤ nn iii int denotes the probability that
there is an internal collision in the table T. We have

.2/)1(
2

1]Pr[...]Pr[]Pr[
2

132int
n

q

i
nq qqiCCCP −=
−

≤+++= ∑
=

−

Final collision
Now, we will assume that there is a final collision and no internal collision. Let us denote Pfin
the probability of such an event. For the simplicity, we assume that in the table T there are
only records with the value IV in the second position (we eventually decrease q). Since we
assume that K ≥ n, the key for the final operation is n bits long value hN, which is eventually
padded by zero bits to K bits long key. From the final collision, it follows that in the table T
there are at least two records with different keys xi ≠ xj in the first position, with the same
value IV in the second position and with the same value in the third position Exi(IV) = Exj(IV).
For i = 2, ..., q, let us denote Ci the event that there is j, 1 ≤ j < i such that j-th record and i-th
record in the table have the same values in the third position, i.e. Exi(IV) = Exj(IV). Let Pr[Ci]
denotes the probability of that event. Since the mapping {0, 1}K → {0, 1}n : k → Ek(IV) is the
random oracle, the value Exi(IV) is chosen randomly from the set of all 2n values, so that

18

ni 2/)1(]Pr[Ci −≤ . If there is a final collision, then there an event Ci, for some 2 ≤ i ≤ q, must
have occurred. From here, we have

.2/)1(
2

1]Pr[...]Pr[]Pr[1

2
32

+

=

−≤
−

≤+++≤ ∑ n
q

i
nqfin qqiCCCP

Total estimate
If the adversary finds a collision, it has to be either internal or final. From here, it follows

.,2/)1(*5.12/)1(2/)1(MAC[n](A)Adv_coll_H 1
int qedqqqqqqPP nnn

fin −=−+−≤+≤ +

8.3. Proof of Theorem 3
We will show that it holds .(q) AC[n]Adv_inv_NM2/ 0.3 ≤∗ nq
It suffices to proof that Pr_f_g_σ ≥ 0.3 * q/2n for a particular adversary A defined at our will.
Let us define our adversary. The adversary A looks for one K bits long block m, for which h1
= f(m, h0) and g(h1) = σ. While doing this she asks q1 times the oracle f and q2 times the oracle
g, where q1 = q2 = q/2. For every 1 ≤ i ≤ q1, she chooses ki arbitrarily and obtains the value yi
= f(ki, h0) from the oracle f and the value Hi = g(yi) from the oracle g. If Hi = σ for some i, the
adversary found a preimage of the hash value σ and returns as the message M = ki. If Hi is not
equal to σ for any 1 ≤ i ≤ q1, she returns a negative answer. Since f is a random oracle, the set
{yi}1 ≤ i ≤ q1 contains q1 random values from the set {0, 1}n. Since g is a random oracle, the set
{Hi}1 ≤ i ≤ q2 is the set of q2 randomly chosen values from the set {0, 1}n. The probability P
that there is the value σ in the set {Hi}1 ≤ i ≤ q2 is equal to

,2/3.02/6.02/)1(1
2
111 22

1)1(2/)4(2

2
nnnq

q

n qqqeeP
n

∗=∗≥∗−≥−≥⎟
⎠
⎞

⎜
⎝
⎛ −−= −−

using Lemma 1 (4), (1) and the fact that <1, qed. nq 2/

Now we will show that .2/(q) AC[n]Adv_inv_NM nq≤
Let A be an adversary (an algorithm) and σ be a hash value. It is sufficient to prove that
Pr_f_g_σ ≤ q/2n. During the activity of the adversary A, the oracle f is creating a list of
records (xi, hi, zi), where zi = f(xi, hi), and the oracle g is creating a list of q2 records (hj, yj),
where yj = g(hj) and q1 + q2 ≤ q. If the algorithm A succeeds, then there is at least one record
in the second list, where yj = σ. From the definition of the random oracle g, it follows that the
set {yj}1 ≤ j ≤ q2 is a set of q2 randomly chosen values from the set {0, 1}n. The probability P
that there is the value σ in the set {yj}1 ≤ j ≤ q2 is equal to

nn
q

n qqP 2/2/
2
111 2

)3(
2

≤≤⎟
⎠
⎞

⎜
⎝
⎛ −−= using Lemma 1 (3). The proof is finished.

8.4. Proof of Theorem 4
We will show that it holds
 .2/)2(158.0 MAC[n](q)Adv_coll_N nqq −∗≥
It is sufficient to prove that for a particular
adversary A defined at our will. Let us define her. The adversary A looks for colliding
messages x

nqq 2/)2(*158.0 MAC[n](A)Adv_coll_N −≥

i ≠ xj, which contain only one K bit long block including the padding:

19

We have
yi = f(xi, h0) and g(yi) = σ and
yj = f(xj, h0) and g(yj) = σ for some σ.
Note that the collision can occur

• in the first step (yi = yj) or
• in the second step (yi ≠ yj), after final operation g

Procedure of the adversary corresponds to these two possibilities. She makes q1 queries to
oracle f and q2 queries to oracle g, where q1 = q2 = q/2. For every 1 ≤ i ≤ q1, the adversary A
chooses K bits long inputs xi arbitrarily and obtains the list of records (xi, h0, yi), where yi =
f(xi, h0). If there are two equal values yi and yj in the third position, she has the collision for
messages xi and xj. If not, the adversary continues by creating the second list. For every 1 ≤ i ≤
q2, she takes values yi from the first list and from the oracle g she obtains values Yi = g(yi).
She creates the list (yi, Yi)1 ≤ i ≤ q2. If there are two equal n bits long values Yi and Yj in the third
position, she has the collision for messages xi and xj. If not, the adversary returns a negative
response (collision not found). Let us denote p the probability that the adversary A will find a
collision by this procedure, and P that she doesn't. From the definition of the random oracle f,
it follows that {yi}1 ≤ i ≤ q1 is the set of q1 random values from the set {0, 1}n. From the
definition of the random oracle g, it follows that {Yi}1 ≤ i ≤ q2 is the set of q2 randomly chosen
values from the set {0, 1}n. The probability that the adversary will not find a collision in q1 +
q2 oracle calls is

() ()
.

2
1

2
1

2/)4/)2((2/)1(2/)1(

1

1

1

1

2/2/)2(
1

1

1

1
1

22
1

11

1 21 2

nnn

nn

qqqqqq

q

i

q

i

ii
q

i

q

i
nn

ee

eeiiP

−−−−−−

−

=

−

=

−−
−

=

−

=

==

=∗≤⎟
⎠
⎞

⎜
⎝
⎛ −∗⎟

⎠
⎞

⎜
⎝
⎛ −=

++

∏ ∏∏ ∏

We used here the fact (2) from Lemma 1 and that q1 = q2 = q/2. The probability that there will
be a collision, is

.2/)2(158.02/)4/)2(()1(11 1)1(2/)4/)2((nnqq qqqqeePp
n

−∗≥−∗−≥−≥−= −−−
We used here the fact (1) from Lemma 1, i.e. 1 - e-z ≥ (1-e-1)z for all 0 ≤ z ≤ 1. In the role of z,
there is the expression z = (q(q-2)/4)/ 2n. According to presumptions we have q ≤ 2n/2, so that
z ≤ 1 and the treatment was correct. The proof is finished.

Now, we will show that .2/)1(5.0 (q) MAC[n]Adv_coll_N nqq −∗≤
It suffices to prove that for any adversary A and 1
< q ≤ 2

nqq 2/)1(*5.0 (A) MAC[n]Adv_coll_N −≤
n +1 (for greater q the right side of the target inequality is greater then one). We can

model the activity of the adversary A by his queries to oracles f and g. The oracle f creates a
table Tf of records (x, h, y), where (x, h) is the input, taken by the adversary, and y = f(x, h) is
the response. The oracle g creates a table Tg of records (X, Y), where X is the input, taken by
the adversary and Y = g(X) is the response. Let us denote q1 number of queries to oracle f and
q2 number of queries to oracle g. We have q ≤ q1 + q2. The attacker A is searching for
colliding messages M ≠ M´, which have several K bits long blocks including the padding. The
messages can differ in a number of blocks. If there is a collision, there are two cases:

• Internal collision. In this case, the collision occurred before the final operation g.
• Final collision. In this case, the collision occurred after the final operation and it has

occurred nowhere before the final operation g.

20

Internal collision
Let us elaborate the internal collision first. In this case, there has to be created a record (xi, hi-

1, hi = f(xi, hi-1)) in the table Tf during processing of the first message and a record (xj, hj-1, hj =
f(xj, hj-1)) during processing of the second message, where i ≠ j are indexes of oracle’s records
(they are not indexes of blocks of messages), (xi, hi-1) ≠ (xj, hj-1) and hi = hj, where xi is some K
bits long block of the first message and xj is some K bits long block of the second message.
For fixed i = 2, ..., q, let us denote Ci the event that there is an index j, 1 ≤ j < i, such that j-th
and i-th records in the table Tf have the same values in the third position, whereas (xi, hi-1) ≠
(xj, hj-1). Denote Pr[Ci] probability of this event. Since f is a random oracle, it chooses the
answer yi to i-th query randomly from the set of 2n values. The probability that it equals to one
value from the set of values in the third position in the table Tf is less or equal to (i - 1)/2n, i.e.

 Let P.2/)1(]Pr[Ci
ni −≤ int denote the probability that there is an internal collision. We have

.2/)1(
2

1]Pr[...]Pr[]Pr[1
11

2
32int

1

1

+

=

−≤
−

≤+++= ∑ n
q

i
nq qqiCCCP

Final collision
Now, we will assume that there is a final collision and no internal collision. The oracle g
creates the table Tg with records (Xi, g(Xi)), 1 ≤ i ≤ q2. Denote Pfin the probability of the final
collision. For fixed i = 2, ..., q2, let us denote Ci the event that there is j, 1 ≤ j < i, such that j-th
record and i-th record in the table Tg have the same values in the second position, i.e. g(Xi) =
g(Xj). Let Pr[Ci] denote the probability of such an event. Since g is a random oracle, the value
g(Xi) is chosen randomly from the set of all 2n values, so that If there is a
final collision, then there was an event C

.2/)1(]Pr[Ci
ni −≤

i for some 2 ≤ i ≤ q2. Therefore, we have

.2/)1(
2

1]Pr[...]Pr[]Pr[1
22

2
32

2

2

+

=

−≤
−

≤+++≤ ∑ n
q

i
nqfin qqiCCCP

Total estimate
If the adversary finds a collision, it has to be either internal or final. From here, it follows

,2/)(2/)]()[(

2/)1(2/)1((A) MAC[n]Adv_coll_N
121

21
2

21

1
22

1
11int

++

++

−=+−+≤

≤−+−≤+≤
nn

nn
fin

qqqqqq

qqqqPP

qed.

9. Appendix 2: Definition of the Special
Block Cipher DN (Double Net)

Will be added soon, after the approval of its publications.

10. Appendix 3: Definition of the Hash
Function HDN (Hash Double Net)

Will be added soon, after the approval of its publications.

21

