- {Naformétovéno: Nadpis 1 J

*=_
- ‘[ Naformatovano: Odrazky a Cislovani ]

1 Performance Comparison of SHA-3 Finalists

This section discusses how the finalist candidpégform when implemented in software - { Naformatovano: Zarovnat do bloku |
for different computers, and in hardware circuits.

All of the SHA-3 finalist candidates, as well as/S8, have four variants with 224, 256, {Komentél" [SC1]: May want to inserta}
384 and 512-bit message digest outputs. SkeinJBingenerate all four message digest. |4ashafter the number later on.

sizes with the same compression function, and finereall four run at about the same { Naformatovéno: Zarovnat do bioku |
rate. Keccak also uses a single compression imti generate all four output sizes, but
the bigger the output, the smaller the messagekbtbat is processed by each
compression function call, and therefore, the higthee message digest, the slower
Keccak runs:Blake, Grgstl and SHA-2 use two different compmr@ssunctions, one for
512 and 384-bit message digests, and one for 286224-bit message digestsihe
512/384 bitfunctionsand the 256/224 bitash functionsligestsvuariants-sually run at KomentaF [SC2]: Shall we just say
different speeds on the same platform. ”””””” "funtions" instead? Just to be consistent.

Therefore, in the performance discussions, weugillally refer to:
= Skein
» Blake-256 and Blake-512
* Grostl-256 and Grgstl-512

« JH
» Keccak-224, Keccak-256, Keccak-384 and Keccak-512
* Skein = {Naformétovéno: QOdrazky a Cislovani ]

* SHA-256 and SHA-512

In the performance discussion, whenever the namancdlgorithm is used without& - { Naformatovano: Zarovnat do bloku |
specific digest size attached, then the statenppites for all four digest sizes.

N -- {Naformétovéno: Nadpis 2 J

1.1 Software Performance Comparison ~ { Naformatovano: Odrazky a dislovani |

We will first describe the current computer systetimst we expect to run SHA-3, and - { Naformatovéno: Zarovnat do bloku
make some near term projections. Then we will discthe performance differences
found on these kinds of systems.

Komentar [Meltem3]: Do we need thi
section? In the security section, we tried o
be as brief as possible and did not includ
anything other than the results of the pa|
This section is too detailed comparing to
the security section.
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__ -~ | Komentar [SC4]: Don't we need an
article for these items?




_ - -| Komentar [SC6]: Check for the
i consistent use of this dash later.

__ -~ | Komentaf [SC7]: This is a pretty long
sentence. For readability, it may help to
break this up a bit.




We ean-therdivide the space of commercially available commitieat we have SHA-3 - - { Naformatovéno: Zarovnat do bloku
finalist performance data for into five categondsifive-classes-ef-machines




AMDB64: These machineseseribed-abevaregeneral purpose Complex Instruction<Set- { Naformétovano: Zarovnat do bloku |
Computers CISC) general-purpose-computamsth a 64-bit word orientation anflingle
Instruction Multiple Data (SIMDYector units. They all run the 64-bit oriented ABWD
instruction set architecture (ISA). AMD64 machingedominate today in desktop,
laptop and netbook computers as well as servedd gbrts. They typically have very
large RAM memories, and increasingly have two omrenimdependent “cores”, each
capable of independently executing a program thrézath core typically has a general-
purpose superscalarithmetic and Logic Unit ALU) supporting 64-bit word operations
and able to simultaneously launch two instructianeach clock cycle. They also have a
vector unit in each core. Since vector units wateduced for the x86 architecture in the
1990s, they have gone in stages from eight 64ekisters to thirty-two 256-bit registers
for the latest announced products. The most rapachines have vector units that can
simultaneously execute eight 32-bit operations aur f64-bit operations in a 256-bit
vector register. Most desktop, laptop and server computers sadthytcare AMD64
machines.

X86: These are the 32-bit predecessors of the AMD64oatens. Many legacy systems
run on X86 computers, which now usually are AMD6d4cinines operating in the X86
mode. Most fairly recent examples include a veatotr and a super-scalar ALU.

ARM- NEON: These machines run a relatively high-end impleatént of the ARM

ISA with a vector unit. The NEON vector instructiset uses registers that can be viewed
as thirty-two 64-bit reqisters or sixteen 128-bigisters. Many of the SHA-3 finalists
benefit significantly from 64-bit instructions oit klice implementations on wider words,
and run markedly faster on the NEON equipped ARMmTES.

32-bit RISC: TheseReduced Instruction-Set Computers (RISC)smadar or super-
scalar machinethatare typically used today in a wide range of appilices from smart
phones, tablet computers, and appliances such 8uGiEs and music players, to
controllers and sensors embedded in many prodBigtiar Fthe most widely useRBISC
instruction-set ISAs the ARMISA, which is widely licensed in a variety of “core$lat
are incorporated in application specific integrateduits. Other legacy 32-bit RISC
ISAs studied in the SHA-3 selection include the BARC (PPC), and MIPS ISAs.

Embedded Microcontrollers: These are small computers, typically included on an

Application Specific Integrated Circuit (ASIC) Wwitnemory and other application

specific logic. In this category the primary constraint is usu&&M memory, although
power may be another constraint. Timgy-beisthe most diverse category, and there are
a number oEemputer-architecturesISAmcluding the 32-bit ARM, and sixteen and
eight-bit microcontrollers.  Applications for $ucomputers include smart cards, sensors,




smart meters, servo controllers, some RFID tagsagpldthora of potentially networked
appliances.

| = {Naformétovéno: Nadpis 2 ]
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1.2 SHA-3-Candidate Software Performance Studies

o ‘[Naformétovéno: Odrazky a Cislovani ]

Several studies have been done that compare allBHAd the SHA-3 finalistusing

programs written by a single programmer or a sredm for a specific platform or

language or with a specific design goal. Theseuites studies on optimized Java code

run on a current AMD64 computer [Hanserl2] and ptimized assembler on the

ARM11 processor [Yang12], which is widely used nast phones and tablet computers,

but does not include the NEON vector engine. Harethe vast bulk of the gvgilgpl,e/{l(omfr:té: [Meltem8]: Is this list
complete ?

SHA-3 finalist performance data was provided by teaoperative projectseBASH
(ECRYPT Benchmarking of All Submitted Hashes) [B#ein], and XBX [Wenzel-

Benner 12]:

combining these two paragraphs with
section “eBash Performance measurements

_ - -1 KomentaF [Meltem9]: | suggest
of general purpose computers”.

N ‘[ Naformatovano: Odrazky a Cislovani J

previous comment, | suggest combining this
paragraph with the “Embedded
Microcontrollers” section.

machines—characteristically —used——with—very —little —emory. - w KomentaF [Meltem10]: Similar to my



http://xbx.das-labor.org/trac/wiki

|-~ { Naformatovano: Nadpis 3 ]
1.2.1 eBASH: Performance-Measurements-ef—General-Purpose "~ { Naformatovano: Odrazky a &islovani
Computers

The eBASH homepage is found hitp:/bench.cr.yp.to/ebash.htmiDuring the course ©f - - { Naformatovano: Zarovnat do bloku
the SHA-3 competition, a large number of hash fiemst were benchmarkezh general

purpose computerg&nd much data on all of them can be found oreB®SH site. The

best comparative presentation of the data for tH&-S finalists and SHA-2 is the

“shootout” graphs found athttp://bench.cr.yp.to/results-sha3.hfmind we made

extensive use of this data, which includes six kgsaphat summarize algorithm

performance for various message lengtiie eBASH SHA-3 “shootout” summaries

include data for fifteen AMD64 processor modelsp 486 processor implementations,

the PPC G4, four different ARM core designs and dileS32 implementation. In many

cases, the eBASH benchmarks were run on severfarefit examples of the same

general processor model. _ - 1 Komentar [Meltem11]: | suggest
”””””””””””””””””””””””””””””” combining these two paragraphs with
section “eBash Performance measurements

The six summary graphs, as of May 22, 2012, argntegl in Figures A1-A6. Only the of general purpose computers’”.
512-bit and 256-bialgerithms variant@re plotted. On the summary grapbsly the

best (fastest) implementation of all of the manyplementations tested is reported, for

each test system.

Throughput is stated in machine cycles per byte, e fewer cycles the better the - { Naformatovano: Zarovnat do bloku
performance. The fastest performance of the gstithms on the latest machines is on
the order of about 6 cycles per byte.

One other feature of the eBASH website deserve<iapeattention here. At
http://bench.cr.yp.to/primitives-sha3.htrthere is a table labeled “Which hash functions
are measured? (SHA-2/SHA-3 excerpt)” is a tablalbthe variants of all the SHA-3
finalists, plus SHA-512 and SHA-256, and threeétmodes” of Blake and Keccak that
|mplement i- thread parallel |mplementat|0ns of tizesh aIgonthm&By%hekmg@n%e

name 3 hm eade q ormance he

+mplememat49ns—tested—ter—that—algemhmhe |mplementat|ons that depend heawly on
vector units are often given names that identify type of vector unit: sse, avx, mmx for
AMDG64 or x86 machines, or NEON for ARM machines.

We categorize the computers used in eBASH into ébdine five groups described

above:

e AMDG64: use the AMD64 ISA and generally include @teg unit.

» X86: use the 32-bit X86 ISA and may include a veatat. | KomentaF [Meltem12]: | suggest to
32-bit RISC: use the following 32-bit RISC ISAs: MRMIPS or PPC. A vector ' | a0 e e o o R ea and
unit is not used. /| the next section use a different ordering. |

«  ARM-NEON: use the 32-bit ARM ISA with the NEON vectunit. ‘ 7777777777 / /{Naformétovéno: Zarovnat do bloku ]

Komentar [Meltem13]: In Figure X )

To try to visually distil the complex graphs of thBASH into a simpler presentation,ve <~ | and Y, colors are used. I think we should
give a color coding. Or how about

categorize performance of each algorithnitgh, medium or Jow for the four different.” | removing the colors?

categorles of computers in Figure x andryafm&nﬂepsememqakanalegeewpadmg{mformmvam Pismo: Kurziva ]

edrigure x is for long messages (greater than 409
bytes) while Figure vy illustrates shorter messages obgiés. These are based on the

{Naformatovano Pismo: Kurziva ]

{Naformatovano Pismo: Kurziva ]



http://bench.cr.yp.to/ebash.html
http://bench.cr.yp.to/results-sha3.html
http://bench.cr.yp.to/primitives-sha3.html

eBASH “shootout” graphs for six different sizesméssages (long, 4096-bytes, 1536-
bytes, 576-bytes, 64-bytes and 8-bytes). Theseessentially “eyeball” judgments of
relatively noisy data; the reader can study Figuxels through A-6, the actual detailed
eBASH shootout plots, to see how well our categoidns fit the data. The data for JH
in particular seems erratic: this is apparentlydose the fastest JH vector code was
completed very late, and had been run on somediwlinthe benchmark machines. This
makes little comparative difference, because evenfastest JH implementations are
among the slowest of the algorithms. For eachgoayeof machine, the performance
range of the algorithms seems to be between twotlaeg octaves, that is, the fastest
algorithms seem to be about four to eight timesspieed of the slowest.

N -- {Naformétovéno
1.2.1.1 Performanceon-Long Messages "~ { Naformatovano

«- - {Naformétovéno

only two algorithms that generally are faster tHalHA-512 on AMDG64 platforms.
Blake-256 is also fast on newer AMD64 platformshwidrger vector register files [Neves
12], but falls off on older machines. SHA-512, SiaB6 and Keccak-256 are in the
medium range averaging about half the speed ohitie group, along with Grgstl-256
and Grgstl-512 on very new machines with the AESAStructions. JH also makes the
medium group for very recent AMD64 processors,rmitolder processors. Grgstl-256,
Grgstl-512 (no AES-NI) and Keccak-512 and JH arthénlow group, with performance
only around % of that of the high performance group

X86: The high group here is Blake-256, Skein, and SBA;all ARX type algorithms.
The low group is Keccak-512, and Grgstl. Altho@kein does well, algorithms that use
a 32-bit word may have an advantage on these 32diihines.

ARM - NEON: The high group is Blake, Skein and SHA-256, the mnexds JH and
Keccak-256, while the low group is Grgstl, Keccdk@mnd SHA-512. The ability of the
NEON vector unit to do 64-bit operations probabdyps Skein and Blake-512 here.

32-hit RISC: The high performance algorithms are Blake-256 SiHé\-256, with Grastl,
Keccak-512 and JH at the low end.

Algorithm AMDG64 X86 ARM-NEON 32-bit RISC
High | Med | Low | High | Med | Low | High | Med | Low | High | Med | Low
Blake-512 | v v v v
Blake-256 | v/ v v v v
Grgstl-512 v v v v v
Grostl-256 v Y v 4 v
JH v v | Y v v
Keccak-512 v v v v
Keccak-256 v v | Y v v

: Nadpis 4
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Skein v A4 v v
SHA-512 v v v v
SHA-256 v v v v
Table X - eBASH performance comparison for lon@(96-byte) messages - { KomentaF [Meltem14]: | prefer a

more compact table, so | combined the
tables in Figure x. We may do the same fpr

* Only on processors with AES NI instructions Figure v, if you prefer. | removed the cols
but we can put them back.

N -- {Naformétovéno: Nadpis 4 ]

1.2.1.2 Pe#epmaneeeﬂm-byte M €SSages | ‘[Naformétovéno: Odrazky a &islovani J

This comparatively small message size starts tovstie effects of both fixed per
message overhead and of different input block siebgch range from 512 to 1088 bits.
Average cycles per byte seem to be about twiceafhiahg messages, but the ordering of
things has changed remarkably littléit this message size Keccak-512 looks about as
good in comparison to others as it ever will, siBdebytes just fits, with padding, in a
single message block and it has no extra finabmatound, while other algorithms either
need two blocks or process a significantly largg8-byte message block.

AMDG64: As with long messages, Blake and Skein lead &krst Blake-256 is fast on
new machines with largeector register sizelsut drops down into the medium level for - { KomentaF [SC151: vector register files?
older AMD64 machines. Keccak-512 is now in the medlevel with Keccak-256,

because its 576-bit input block inputs the entiessage in 1 blocknd-thereforeruns-as

fastasKeeak-256 Grgstl-512 falls back to the low category eveithvthe AES-NI

instructions, probably because of the extra oveftadahe final “blank” round. Gragstl-

256 stays in the medium group with SHA-256 and S512-

X86: Blake-256, Skein and SHA-256 are fast on this 32vord ISA. With no AES ~ {Naformétovéno: Pismo: Kurziva ]

hardware support Grgstl-256 and 512 shows low peeace * { Naformatovano: Doleva )
along with Keccak-512 and SHA-512.

ARM-NEON: Blake-256, Blake-512 and SHA-256 are fast, whitg$H-256, Grgstl-512 - { Naformatovano: Pismo: kuziva |

32-bit RISC: The two algorithms that use 32-bit modular additxtensively are fast, «._- {Naformétovéno: Pismo: Kurziva ]

while Grgstl-256, Grgstl-512 and JH are slow. * { Naformétovano: Doleva )




AMDG64

Algorithm Relative Performance

Blake-512

Blake-256
Grosel-512
Gros#l-256
JH

Keccak-512
Keccak-256

SHA-512
SHA-256

ARMwith--NEON

Algorithm Relative performance

Low

Blake-512
Blake-256
Gros#l-512
Grosel-256
JH

Keccak-512
Keccak-256

SHA-512
SHA-256

X86
Algorithm Relative Performance
High | Med | Low
Blake-512

Blake-256

Gros#l-512

Gros#l-256

JH

Keccak-512

Keccak-256

SHA-512
SHA-256

32-bit RISGalo-vectorunit

Algorithm

Relative performance

High | Med | Low

Blake-512
Blake-256
Grosel-512

Gros#l-256

JH

Keccak-512

Keccak-256

Skein

SHA-512
SHA-256

Fig x - eBASH performance comparison for long (> 4-byte) messaq

=

Komentar [Meltem16]: The colors
encoding should be included to the capti

b

«--- ‘[ Naformatovana tabulka




AMDG64 X86

Algorithm Relative Performance Algorithm Relative Performance
Low High | Med | Low
Blake-512 Blake-512
Blake-256 Blake-256
Gros#el-512 Gros#l-512
Gros#l-256 Gros#l-256
JH JH
Keccak-512 Keccak-512
Keccak-256 Keccak-256
Skein Skein-512
SHA-512 SHA-512
SHA-256 SHA-256
ARMwith-- NEON 32-bit RISGafo-vectorunit
Algorithm Relative performance Algorithm Relative performance
High | Med | Low High | Med | Low
Blake-512 Blake-512
Blake-256 Blake-256
Gros#el-512 Gros#l-512
Gros#l-256 Gros#l-256
JH JH
Keccak-512 Keccak-512
Keccak-256 Keccak-256
Skein Skein
SHA-512 SHA-512
SHA-256 SHA-256

«- - ‘[Naformétovéno: Doleva




" AMDS&4 %86 ARM-NEON 32-bitRISC
Grostl-256
Algorithm

High | Med | Low | High | Med | Low | High | Med | Low | High | Med | Low
Blake-512 | + A “ “
Blake-266 |+ |+ “ A ~
Grost-b12 | £ - A A
Grast-256 v |~ s A A
H ~ ¥~ |~ A x
Keeeak-512 < i ~ A
el ¥~ ¥~ | £ A ~
Skein ~ ¥ |~ ~ A
SHA-512 ~ h A ~

v

- | Komentar [Meltem17]: | prefer a
more compact table, so | combined the
tables in Figure x. We may do the same fpr
. | Figurey, if you prefer. | removed the colt
\ | but we can put them back.

Algorithm AMD64 X86 ARM-NEON 32-bit RISC f“af°’mét°"é“°= Doleva ]
High | Med | Low | High | Med | Low | High | Med | Low | High | Med | Low

Blake-512 | v v v v
Blake-256 | v |V v 4 v
Grostl-512 v v v v
Grostl-256 v v v v 4
JH v Yy ¥ v 4
Keccak-512 v 4 v v
Keccak-256 v v | v v v
Skein % v |7 v v
SHA-512 v v v v
SHA-256 v v v v

Table y - eBASH performance comparison for 64-byessages - { KomentaF [Meltem18]: | prefer a +

- more compact table, so | combined the
i . . A tables in Figure x. We may do the same fpr
* Only on processors with AES NI instructions \_ | Figure y, if you prefer. | removed the colt
\ | but we can put them back.

\
{ Naformatovano: Doleva
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1.2.2 XBX: Embedded Microcontrollers "~ Naformatovano: Odrézky a tislovani |

Most of our data on embedded microcontrollers cofes the XBX effort. XBX

[Wenzel-Benner 12] focused on embedded computeesentt is usual to compile or
assemble code on some development system, anduheih on a small computer or
“microcontroller.” They collected and measured SBIAmplementations on _eight
embedded platforms. The website for the effomrtishttp://xbx.das-labor.org/trac/wiki.



http://xbx.das-labor.org/trac/wiki

Some of the 32-bit ARM processors benchmarked oX XBre as powerful as some of
the machines tested by eBASH, and included veaiis,uwhile others were 8- and 16-
bit machines characteristically used with verydithemory.

In contrast to eBASH, XBX gives the RAM and ROM uweégments of the fastest
implementations for each processor tested, and™amersus speed plots, for each of the
implementations measured. The area metric ust@iXBX is area = 4« RAM + ROM.
This is a heuristic based on the rule of thumb EB¥aM memory requires about 4 times
the area on a chip as ROM memory. In the largstesys used in eBASH, the memory
required by hash algorithms is rarely an issue, rheimory use is often an issue and
sometimes the major constraint with embedded marwollers. In addition to XBX,
[Yang 12] gives optimized implementations for allef finalists plus SHA-2 on the
ARM-11 processor, which is very commonly used ith glones.

Eight-bit: Only one 8-bit microcontroller was tested, the AtATmegal28P. The
smallest area andrgstl-256 attainethe best performanegas-attained-by-Grast-256
perhaps the only software case where Grgstl waiaghest algorithm. This probably is
because of the 8-bit orientation of the AES operetiused by Gragstl. Blake-256 was
nearly as fast as Grgstl, but took somewhat mae. akeccak-256 was also compact
and third in throughput. Interestingly, SHA-256saamparatively big and slow and
SHA-512 had the worst overall performance of amgpathm.

Sixteen-bit: Only one 16-bit microcontroller, the Texas Instams’ MSP430FG4618,
was tested. Overall, Blake-256 was fast and smafl, SHA-256 was second. Grgstl-
256 was small but fairly slow. Keccak-256 wastebimger than Blake-256 and
somewhat faster than Grgstl-256, but no matchifbeeBlake-256 or SHA-256.
Keccak-256 has relatively small area and reasorgdiy throughput.

ARM (thumb instructions): This version of the ARM processor is a low-end
microcontroller that only implements the 16-bititituinstructions. The XBX authors
count small area to be the primary goal for thagfpkrm, and Blake and JH-256 are the
two smallest algorithms. Blake-256 and SHA-256¢ehthe highest (very similar)
throughputs, but the minimum area requirementSHA-256are is ishigher than Blake-
256. Keccak has a fairly small area requiremert, keccak-256 is third in overall
performance. Skein has the largest area requirgueth Grgstl-512 and JH are simply

slow.

32-bit RISC: This category includes several ARM processorsingithe regular 32-bit
instructions (but without the NEON vector proce¥sord a 32-bit MIPS processor. Both
XBX and [Yang 12] give us data here. SHA-256 isfdmsest algorithm overall, followed
by Blake-256. Since these are both 32-bit orie®X algorithms and these are all 32-
bit RISC architectures, it isot-surprisingexpectetthat they should be fastest; but in
general-purpose computers, Blake-256 had the edgeSHA-256.We-suspectthatthis
is-becaus@MD64 and X86 machines have vector units or duahéh superscalar ALUs
andapparentlyare more readily able to exploit the parallel pesieg opportunities of
Blake-256, than those of SHA-256. Skein, Blake;X&ccak-256 and SHA-512 vie for

Komentar [SC19]: Shall we use the
singular form instead of the plural form
here?




third place, depending on the specific processbilevGrastl-256, Grgstl-512 and JH are
at the bottom, much (typically 3 to 8 times) slowean SHA-256. In area, Blake-256
and Grgstl-256 are usually the smallest.

ARM with NEON: This is a relatively fast ARM core with the additiof a vector unit
that supports 64-bit operations. With the additdthe vector unit, Skein becomes the
fastest algorithm, followed fairly closely by Bla&6, Blake-512 and SHA-256.
Keccak-256 is about half the speed of Skein whidedak-512 about three times slower.
JH and Grgstl are four to nine times slower thagitskThe overall results are similar to
those on eBASH for ARMs with the NEON vector uaithough JH seems to do
somewhat worse in the XBX benchmarks than the eBASHIts.

The eBASH investigators give an overall rankingdmrbedded computers that factors in

their understanding of whether the usual goaltiergarticular computer is throughput or

minimum area. In that ranking Blake is first, vehfkein barely edges out Keccak and

Grgstl for second place. They did not include SH#-this ranking; however,

considering the good performance of SHA-256 on BRISC machines, if SHA-2 were

included, it might beat Skein for second placegsithere are four 32-bit platforms where

SHA-2 is the fastest algorithm, although rarelyabigrge margin. But the smallest SHA- {Komentél" [SC20]: | assume you mean}

256 implementations nearly always require somewiae area than the smallest Blake- 105/ "SHA=2"here.

256 implementations, so Blake-256 has the ovedsthatage.

N - - {Naformétovéno: Nadpis 3 J
&The Future - ‘[ Naformatovano: Odrazky a Cislovani ]
An obvious starting point for projecting the futuseperformance data from the recent
higher end processors. Figure z graphs eBASHfdathree recent AMD64 architecture
processors. In these graphs, each bar representadan cycles per byte for the fastest
implementation of each algorithm on one of the éhpeocessors. Smaller bars mean
faster throughput. The five finalist algorithmsupISHA-2 are plotted; however, in the
case of Skein and JH, only one bar is plotted, ezall four output sizes use the same
compression function, and run at about the sanee Faflowing our nomenclature, where
we used one designation for two or four messagestligizes when they run at the same
rate, we plot one bar for each version with a déffe rate. For example, since Blake-256
and Blake-224 run at the same speed, we plot olalkeB256. But we plot all four digest
sizes for Keccak, because each runs at a diffepeed. For consistency with other
algorithms, the nomenclature for Keccak has alsenbehanged in this report from
eBASH, which generally labels Keccak variants bgithcapacity; for example, the
eBASH “keccakc512”, which outputs a 256-bit messdigest, becomes “keccak-256" in
Figure z.

Much of the ISA development activity in the pastalde has been the addition and
extension of vector units and their instructiomisis reasonable to expect vector register
files to continue to grow, more instructions to dded, and to find more use in even
embedded systems. It seems too big an assummiexpect that because AES has
inspired additional support instructions, that SBIAvould also do so. If it did it would




likely be far down the road, unless the instrudidike vector rotates, have more general
uses than implementing hash functions.

Another kind of processor that we have not considén the competition is Graphics
Processor Units (GPUs) that are common on procgegsorlaptop, desktop and even
tablet computers. These are arrays of fairly spieeh processors organized for stream
processing and are _most commonly used for imagéeremy. Gaming and high
definition _animation have driven their developmemtd they have been applied
cryptography, but more for cryptanalysis than faortecting data; GPUs are well suited to
applications that can be divided into many indepemndrocesses, such as password
cracking. But it is hard for to envision much neam use for data protection.

]Figure z-1 plots the cycles required per messagedfyjong messages for “h6sandy,” an
Intel® Core i3-2310M, a “Sandy Bridge” internal architecture processith two 2100

MHz cores, intended for laptop computers. FiguBeptots cycles per byte for “sandy@," {

an Intel Core i7-2600K, a Sandy Bridge four cor@@B#Hz processor intended for
relatively high-end desktop computers. Figurepes cycles per byte for “hydra6,” an
AMD FX-8120, a “Bulldozer” internal architectureqmessor with four 3100 MHz cores,
also for desktop applications. The Intel Sandylgeiprocessors implement the AVX
vector instruction set, with sixteen 256-bit regist and the AMD Bulldozer processors
implement the XOP vector instruction set, whickimilar to the AVX with some
additional extensions including, in particular, 8% and 64-bit rotate operations (which
may or may not presage similar extensions to futubed vector units). There is one
significant difference between the two Sandy Briggaecessors: sandy0 implements the
AES-NI instructions, and h6sandy does note RES-NI instructionsigiffecs only the
performance of Grgstl.

In addition to the five finalists and SHA-2 algdwits described above, a “tree-mode,”
labeled “Bblake-256" is implemented on all threeqassors, while two more tree-modes,
Bblake-512 and Keccak-256treed2 are implementedtfer AMD FX-8120. These
modes generate a single 512 or 256-bit hash frompiavallel streams using the regular
compression function, and are examples of “Prongssiultiple Buffers in Parallel” or
“multi-buffering” to facilitate efficient use of [@pal 10a]; in these particular cases by
dividing a single file into two parts to be hashegarallel. The same technique can also
be applied to two independent hash streams, astmigtur on a server with many
simultaneously active TLS connections.

Skein does not seem to benefit from the vectosutdtgely, we believe, because of the
different rotation constants used in its Mix opinag, even though four parallel Mix
operations occur in each round. Skein, howevemésof the fastest algorithms on all
three of these machines, relying primarily on tiseiperscalar general purpose ALUs.

! The use of the corporate names Intel and AMD &aeddentification of specific product
models, processor architectures and their featsitesenable readers to understand and
check the performance data presented here. dtiamendorsement or recommendation
by NIST of any company, product or feature.

Komentar [SC21]: | think you got the
order (of the figures) reversed.




Blake logically allows parallel execution of foufrits building-block G-functions, with
their rotates; unlike Skein, Blake’s four parahetates all use the same rotation values,
facilitating vectorization. We see that on theshines with the most advanced vector
units, Blake-256, which uses 32-bit words, becoale®st as fast as Skein-256, which
uses 64-bit words and in older AMD64 machines hbigger advantage over Blake-256.
Blake 512 pulls a bit ahead of Skein-512 on theaehimes, although Skein-512 has the
advantage on older AMD64 machines.

We also see that Keccak does relatively betteherBulldozer because only the
Bulldozer implements vector rotation instructiogsjng about a factor of 1.7 speed
improvement [van Assche 12]. Blake also benefisfthe rotate instruction [Neves 12].
A single Skein thread probably won’t be helped werych by a simple rotate instruction
that rotates all words by the same amount. Giwstgnificantly helped by the AES-NI
instructions and corresponding AES extension orBililelozer. JHclearly benefits from

O at-ma itfaster
be-Neither JH nor Grastl

All of the candidates as well as SHA-2 potentiaiy benefit from tree mode or multi-
buffer implementations, although perhaps to varglagrees. The different rotation
values that complicate vectorizing a single Skeiedd should not matter in a multi-
buffer implementation. But there has not been ghavork done on this to draw strong
conclusions about which algorithms benefit most.
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Figure z-1 — SHA-3 Finalist Cycles/Byte on Curr8aindy Bridge Desktop Processor
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Figure z-2 — SHA-3 Finalist Cycles/Byte on Curr8aindy Bridge Laptop Processor
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Figure z-3 - SHA-3 Finalist Cycles/Byte on Curr8utldozer Desktop Processor



N -- {Naformétovéno: Nadpis 3 ]
1.2.4 Software Performance Summary ~~ { Naformétovano: Odrézky a dislovéni |

Skein and Blake, the two ARX finalist candidatémve the best overall software
performance. Only Skein and Blake seem to be féster SHA-2 in most cases.

Skein has the advantage of a single compressiatifumfor all four message digest sizes,
which saves memory if all four sizes are requireégkein-256 has a small to moderate
performance advantage over Blake-256 on AMD64 @fat§, which may, or may not

carry over to future 64-bit ARMv8 processorsiéy- the processomdopt super-scalar - - -{ KomentaF [Meltem22]: Who? )

ALUs similar to the ones used in AMD64 process8iake-512 seems to gain a modest
performance advantage over Skein-512 on more re@btiD64 machines by better
fitting their vector units.

On 32-bit machines (mainly ARM processors) witheettor units, Blake-256 is the- - { Naformétovano: Zarovnat do bloku
clear overall leader, although it does not offey eeal speed advantage over SHA-256.

On ARMs with the NEON vector unit, Skein seemsfamest algorithm, followed fairly

closely by Blake.

On small embedded computers, Blake-32 has degisthel best overall performance. {KomentéF [SC23]: Is this data priorto}
Blake-32's maximum throughput is often similar &, sometimes less than SHA-256,- | 0und3? The name indicates so.
but Blake-32 generally had smaller memory requirasi¢han SHA-2 and most of the [ Naformatovano: Zarovnat do bloku )

other candidates.

Keccak is reasonably fast for smaller digest simes range of machines, but Keceak-- { Naformatovano: Zarovnat do bloku |
512 is among the slows algorithms on most machines. Keccak benefitsifsogmtly

from vector rotate instructions, which may becoroenmon on future processors. Like

Skein, Keccak uses one compression function fdioaH digest sizes, and is amenable to

compact implementations.

Grgstl-256 seems to need hardware support of ABSxBs to achieve even the medium- { Naformatovano: Zarovnat do bloku |
level of performance on computers with a 64- ob82~ord orientation. Even with such

support, Grgstl -Gresteb12 ranks near the bottom-However, on the one 8-bit

microcontroller tested, Grgstl-128 was the fastestdidate finalisand one of the most

compact.

JH seems to benefit from larger vector sizes, ehewith vector instruction sets that - { Naformétovano: Zarovnat do bioku
allow 128-bit operations, it strains to reach etr@medium performance level.
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Appendix A — e-Bash shootout Plots
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