
1 Performance Comparison of SHA-3 Finalists  
 
This section discusses how the finalist candidates perform when implemented in software 
for different computers, and in hardware circuits.   
 
All of the SHA-3 finalist candidates, as well as SHA-2, have four variants with 224, 256, 
384 and 512-bit message digest outputs.  Skein and JH generate all four message digest 
sizes with the same compression function, and therefore, all four run at about the same 
rate.  Keccak also uses a single compression function to generate all four output sizes, but 
the bigger the output, the smaller the message block that is processed by each 
compression function call, and therefore, the bigger the message digest, the slower 
Keccak runs.  Blake, Grøstl and SHA-2 use two different compression functions, one for 
512 and 384-bit message digests, and one for 256 and 224-bit message digests.  The 
512/384 bit functions and the 256/224 bit hash functions digests vuariants usually run at 
different speeds on the same platform. 
 
Therefore, in the performance discussions, we will usually refer to: 

• Skein  
• Blake-256 and Blake-512 
• Grøstl-256 and Grøstl-512 
• JH  
• Keccak-224, Keccak-256, Keccak-384 and Keccak-512 
• Skein  
• SHA-256 and SHA-512 

 
In the performance discussion, whenever the name of an algorithm is used without a 
specific digest size attached, then the statement applies for all four digest sizes. 
 

1.1 Software Performance Comparison 
We will first describe the current computer systems that we expect to run SHA-3, and 
make some near term projections.  Then we will discuss the performance differences 
found on these kinds of systems. 
 

1.1.1 Computer Systems – the Current Playing Field 
A majority of the cryptographic hash operations done today are probably implemented as 
computer programs written for some general purpose computer in either the computer’s 
assembly language, or in some higher level language, or some combination of the two; 
and run on a general purpose computer. In this section we discuss the various types of 
computers that are commonly used today to execute hash functions, and the near term 
changes that we expect to see in them. 
 

Naformátováno: Nadpis 1

Naformátováno: Odrážky a číslování

Naformátováno: Zarovnat do bloku

Naformátováno: Zarovnat do bloku

Komentář [SC1]: May want to insert a 
dash after the number later on. 

Komentář [SC2]: Shall we just say 
"funtions" instead? Just to be consistent. 

Naformátováno: Odrážky a číslování

Naformátováno: Zarovnat do bloku

Naformátováno: Nadpis 2

Naformátováno: Odrážky a číslování

Naformátováno: Zarovnat do bloku

Naformátováno: Nadpis 3

Naformátováno: Odrážky a číslování

Komentář [Meltem3]: Do we need this 
section? In the security section, we tried to 
be as brief as possible and did not include 
anything other than the results of the papers. 
This section is too detailed comparing to 
the security section. 



This discussion will divide computers into general-purpose computers and embedded 
computers.  General purpose computers are the computers that we recognize explicitly as 
computers, and they generally have a separate computer chip with various support chips 
for memory, displays and the like.  We generally expect to be able to run compilers on 
these systems to develop applications for them.  These include the common desktop, 
laptop, netbook and server computers that are ubiquitous today.   
 
Embedded computers characteristically put RAM and ROM memory, a CPU and 
peripheral controllers and logic, often with other application specific logic on a single 
chip, and are incorporated into some specialized device, such as a router, a modem, a cell 
phone, music player, engine controller, or sensor.  We usually develop software for 
embedded computers on a general-purpose host computer.  At the high end, embedded 
computers are not very different from the general-purpose computers when it comes to 
hash algorithms, but at the low end, embedded computers are much less powerful, and 
have limited memory. 
 
Flynn’s well known taxonomy [Flynn72] of computer architectures defines four general 
computer architectures.  Three of them broadly cover the cases of interest here: 
 

• SISD (Single Instruction stream, Single Data): one instruction stream, each 
instruction operating on one data item at a time.  This may be called a scalar 
computer, and other machines that attempt to run one instruction stream, but 
attempt to launch more than one instruction at a time from that stream whenever 
possible, are called “super scalar.” 

• SIMD (Single Instruction stream, Multiple Data): one instruction stream operating 
on multiple data objects.  Instructions for an SIMD processor are often called 
vector instructions, and the processor is often called a “vector unit.” 

• MIMD (Multiple Instruction stream, Multiple Data stream):  a multiprocessor of 
loosely coupled computers, each in its own right has an SISD or MIMD machine 
(or both).   

 
From the introduction of general-purpose digital computers in the 1950s until the 1990s, 
computers were primarily SISD machines, except for a relatively few very expensive 
“mainframe” and “super computers” that included some level of SIMD or MIMD 
structure.  But by the late 1990s (about the time of the AES competition and the 
development of SHA-2), SIMD “vector units” were added to the desktop computers and 
servers of the era.  Such vector units are now integral to most laptop, desktop and server 
computers, and are also used in some tablet computers, and smartphones.  Vector units 
are commonly used for signal processing, including video and audio CODECs, as well as 
for graphics, image processing and cryptography.  These vector units are one of the major 
areas where computer architectures are rapidly evolving. 
 
In addition, some desktop and laptop computers, as well as dedicated gaming machines 
use separate SIMD graphics coprocessors, which can be very powerful instruments for 
cryptographic computation. However, the main cryptographic use for these units are as 
platforms for the massive computations required by cryptographic attacks, which often 
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are highly parallelizable.  Since these graphics coprocessors are not normally used to 
protect data, we did not consider the use of these units in this study. 
 
Computers are also classified by their instruction sets as a Complex Instruction Set 
Computer (CISC), or a Reduced Instruction Set Computer (RISC).  CISCs have often 
been implemented by “microprogramming” the instruction set that compilers and 
assemblers output and the computer executes.  By the late 1990s the dominant instruction 
set for desktop computers was the “x86” architecture, an instruction set implemented by 
several vendors. The x86, a CISC, used 32-bit arithmetic and logic instructions, had a 32-
bit virtual address space, and had 32-bit registers; it had grown in stages from a family of 
early 8-bit microcomputers.  Because of its importance and ubiquity, performance on the 
x86 architecture played a major role in the AES competition and selection process.   
 
The late 1990s also saw the introduction of the 64-bit variants of the x86 instruction-set 
architecture, and the variant that has prevailed is called the AMD64 (or IA64) instruction-
set.  Now most of the CPUs used by laptop, desktop and server computers implement 
both the x86 in a 32-bit mode and the AMD64 in a 64-bit mode.  At first, relatively little 
64-bit software was available, but now the current versions of major operating systems 
support 64-bit mode, and operation in the 64-bit mode is rapidly displacing the 32-bit 
mode.  The movement to 64-bit operations was anticipated in SHA-2: SHA-256 used 32-
bit operations, while SHA-512 uses 64-bit operations.   
 
Current AMD64 instruction-set computer chips are often extremely complex, with one to 
eight separate “cores,” each effectively an independent computer able to run its own 
program stream; and each with several execution units (a general purpose arithmetic logic 
unit or ALU, a floating point unit and also usually a vector unit), each usually capable of 
simultaneously executing instructions, and each “pipelined” so that instructions are 
executed in stages, and a new instruction can potentially be launched at each processor 
cycle.  ALUs in fact are often capable of simultaneously launching two instructions at 
each clock cycle, while various implementations my execute instructions out of order or 
speculatively.  Much of this is done to automatically execute as much of the program as 
possible in parallel, even though the program is written as a series of serial instructions.   
 
The vector units are now also integral to most x86/AMD64 cores and allow the explicit 
programming of parallel operations, where the same operation is performed on vectors of 
similar data types.  Vector units are commonly used for signal processing, including 
video and audio CODECs and image processing.  Since the introduction of vector 
instruction sets in x86 and AMD64 computers in the 1990s, they have gone from using a 
set of eight 64-bit registers (each unit capable of performing eight one-byte operations, 
four 16-bit operations, or two 32-bit operations in parallel on a register) to as many as 
sixteen 256-bit registers (each unit capable of two 128-bit, four 64-bit, eight 32-bit, 
sixteen 16-bit or thirty-two byte operations in parallel).   
 
In the late 1990s, during the AES competition, several RISC processors, most of them 
with a 32-bit word orientation, were available for everything from embedded controllers 
at the low end, to powerful servers at the high end. In contrast to a CISC machine, RISC 
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machines typically have a simpler instruction set, designed for implantation in a pipelined 
arithmetic logic unit (ALU) that, if all goes well, can launch a new scalar instruction at 
every clock cycle. RISC machines characteristically directly decode and execute 
instructions in logic, rather than by micro programming on some underlying machine.   
 
Today, RISC computers have virtually disappeared in servers, desktop computers and 
laptop computers, although several legacy RISC architectures remain in current use as 
controllers in embedded applications, and in gaming consoles. However, the Advanced 
RISC Machine (ARM) architecture now dominates applications such as smart phones, 
tablet computers, music players, and many embedded computer applications.  ARM 
machines today are 32-bit machines, with a 16 × 32-bit register file, a fixed 32-bit 
instruction width (supplemented for some applications by 16-bit “thumb” instructions) 
usually implemented with a pipelined ALU that attempts to start one instruction per clock.  
Various ARM “cores” are licensed to many vendors and incorporated in a wide variety of 
ASICs, with a vast range of performance levels.  Moreover, the ARM is now seen as a 
potential rival of the x86/AMD64 processors in areas where the X86/AMD64 
architecture currently dominates, including server farms, and laptop or netbook 
computers, while low end x86/AMD64 processors are attempting to gain a toehold in the 
upper end of the main ARM application space, particularly for tablet computers and 
smartphones.   
 
The argument for ARM based processors in servers is that the simpler ARM RISC 
architecture is thought to require less electrical power than an equivalent more complex 
AMD64 architecture, and electrical power consumption (and the resulting heat) seems the 
most fundamental limit on the size and computing power of big server farms.  Still, at this 
point, the use of ARM processors in server farms seems more theoretical than actual.  
The recently announced ARMv8 [Grisen 11] is a 64-bit ARM extension with 64-bit 
registers that will allow the 32-bit ARM applications to be executed in a 64-bit OS.  It 
will include instruction level support for AES, SHA-2 and a vector unit and may become 
a direct challenger to the X86/AMD64 architecture even at the high end of the scale; but 
so far the parts are not commercially available, and we have no performance data on any 
of the SHA-3 finalists when implemented on ARMv8 processors. 
 
Finally there are very small computers embedded in process controllers, sensor, servo 
systems, smart cards, some RFID tags and many other applications.  These “embedded 
microcontrollers” may have 8 or 16 bit word processors, or be “stripped down” versions 
of the ARM 32-bit processor.  In many cases these computers won’t do any hashing at all, 
however, in some cases, for example smart cards, hashing may be an important part of 
what they do.  They typically have relatively little computational power, and often are 
constrained by a battery power supply or the power that can be coupled to the device 
electromagnetically, and, above all, they often have a very small RAM that all their 
functions must share. 
 
We can then divide the space of commercially available computers that we have SHA-3 
finalist performance data for into five categoriesinto five classes of machines: 
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AMD64:  These machines, described above, are general purpose Complex Instruction-Set 
Computers (CISC) general-purpose computers with a 64-bit word orientation and Single 
Instruction Multiple Data (SIMD) vector units.  They all run the 64-bit oriented AMD64 
instruction set architecture (ISA).  AMD64 machines predominate today in desktop, 
laptop and netbook computers as well as servers of all sorts.  They typically have very 
large RAM memories, and increasingly have two or more independent “cores”, each 
capable of independently executing a program thread.  Each core typically has a general-
purpose superscalar Arithmetic and Logic Unit (ALU) supporting 64-bit word operations 
and able to simultaneously launch two instructions at each clock cycle.   They also have a 
vector unit in each core. Since vector units were introduced for the x86 architecture in the 
1990s, they have gone in stages from eight 64-bit registers to thirty-two 256-bit registers 
for the latest announced products.  The most recent machines have vector units that can 
simultaneously execute eight 32-bit operations or four 64-bit operations in a 256-bit 
vector register.  Most desktop, laptop and server computers sold today are AMD64 
machines. 
 
X86: These are the 32-bit predecessors of the AMD64 computers.  Many legacy systems 
run on X86 computers, which now usually are AMD64 machines operating in the X86 
mode.  Most fairly recent examples include a vector unit and a super-scalar ALU. 
 
ARM- NEON: These machines run a relatively high-end implementation of the ARM 
ISA with a vector unit. The NEON vector instruction set uses registers that can be viewed 
as thirty-two 64-bit registers or sixteen 128-bit registers.  Many of the SHA-3 finalists 
benefit significantly from 64-bit instructions or bit slice implementations on wider words, 
and run markedly faster on the NEON equipped ARM machines.   
 
32-bit RISC: These Reduced Instruction-Set Computers (RISC) are scalar or super-
scalar machines that are typically used today in a wide range of applications from smart 
phones, tablet computers, and appliances such as GPS units and music players, to 
controllers and sensors embedded in many products. By far Tthe most widely used RISC 
instruction set ISA is the ARM ISA, which is widely licensed in a variety of “cores” that 
are incorporated in application specific integrated circuits.  Other legacy 32-bit RISC 
ISAs studied in the SHA-3 selection include the PowerPC (PPC), and MIPS ISAs.    
 
ARM- NEON: These machines run a relatively high-end implementation of the ARM 
ISA with a vector unit. The NEON vector instruction set uses registers that can be viewed 
as thirty-two 64-bit registers or sixteen 128-bit registers.  Many of the SHA-3 finalists 
benefit significantly from 64-bit instructions or bit slice implementations on wider words, 
and run markedly faster on the NEON equipped ARM machines.   
 
Embedded Microcontrollers:  These are small computers, typically included on an 
Application Specific  Integrated Circuit (ASIC) with memory and other application 
specific logic.   In this category the primary constraint is usually RAM memory, although 
power may be another constraint.  This may beis the most diverse category, and there are 
a number of computer architecturesISAs, including the 32-bit ARM, and sixteen and 
eight-bit microcontrollers.    Applications for such computers include smart cards, sensors, 
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smart meters, servo controllers, some RFID tags and a plethora of potentially networked 
appliances. 
 

1.2 SHA-3 Candidate Software Performance Studies 
 
Several studies have been done that compare all SHA-2 and the SHA-3 finalists using 
programs written by a single programmer or a small team for a specific platform or 
language or with a specific design goal.  These include studies on optimized Java code 
run on a current AMD64 computer [Hanser12] and in optimized assembler on the 
ARM11 processor [Yang12], which is widely used in smart phones and tablet computers, 
but does not include the NEON vector engine.  However, the vast bulk of the available 
SHA-3 finalist performance data was provided by two cooperative projects, eBASH 
(ECRYPT Benchmarking of All Submitted Hashes) [Bernstein], and XBX [Wenzel-
Benner 12]: 
 
eBASH (ECRYPT Benchmarking of All Submitted Hashes) [Bernstein], which focused 
on general purpose computers where it was possible to compile and run a program on the 
same computer. eBASH was supported by the Virtual Applications and Implementations 
Research Lab (VAMPIRE), a part of the ECRYPT II project.  Tanja Lange, of the 
University of Eindhoven, and Daniel Bernstein, of the University of Illinois, Chicago, 
organized and led eBASH, which was the third such cryptographic benchmarking effort 
organized under VAMPIRE to measure the performance of cryptographic algorithms. 
 
eBASH summary “shootout” results are presented for the fastest implementation found 
for each test machine, after much experimentation with setting compiler options and the 
like, to optimize the performance of each algorithm.  Fastest means processes an input 
message byte in the smallest number of processor cycles.  Memory requirements of the 
implementations are not studied.  The eBASH SHA-3 “shootout” summaries include data 
for fifteen AMD64 processor models, two X86 processor implementations, the PPC G4, 
four different ARM core designs and one MIPS32 implementation.  In many cases, the 
eBASH benchmarks were run on several different examples of the same general 
processor model.  
 

• XBX [Wenzel-Benner 12] focused on embedded computers where it is usual to 
compile or assemble code on some development system, and then run it on a 
small computer or “microcontroller.”  The effort was organized for the SHA-3 
competition by Christian Wetzel-Benner and Jens Gräf. They collected and 
measured SHA-3 implementations on eight embedded platforms.  The website for 
the effort is at: http://xbx.das-labor.org/trac/wiki. Some of the 32-bit ARM 
processors benchmarked on XBX were as powerful as some of the machines 
tested by eBASH, and included vector units, while others were 8- and 16-bit 
machines characteristically used with very little memory.  
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1.2.1 eBASH: Performance Measurements of General-Purpose 
Computers 

The eBASH homepage is found at: http://bench.cr.yp.to/ebash.html.  During the course of 
the SHA-3 competition, a large number of hash functions were benchmarked on general 
purpose computers, and much data on all of them can be found on the eBASH site. The 
best comparative presentation of the data for the SHA-3 finalists and SHA-2 is the 
“shootout” graphs found at: http://bench.cr.yp.to/results-sha3.html, and we made 
extensive use of this data, which includes six graphs that summarize algorithm 
performance for various message lengths.  The eBASH SHA-3 “shootout” summaries 
include data for fifteen AMD64 processor models, two X86 processor implementations, 
the PPC G4, four different ARM core designs and one MIPS32 implementation.  In many 
cases, the eBASH benchmarks were run on several different examples of the same 
general processor model. 
 
The six summary graphs, as of May 22, 2012, are reprinted in Figures A1-A6.  Only the 
512-bit and 256-bit algorithms variants are plotted.  On the summary graphs, only the 
best (fastest) implementation of all of the many implementations tested is reported, for 
each test system.   
 
Throughput is stated in machine cycles per byte, and the fewer cycles the better the 
performance.  The fastest performance of the best algorithms on the latest machines is on 
the order of about 6 cycles per byte.  
 
One other feature of the eBASH website deserves special attention here.  At 
http://bench.cr.yp.to/primitives-sha3.html, there is a table labeled “Which hash functions 
are measured? (SHA-2/SHA-3 excerpt)” is a table of all the variants of all the SHA-3 
finalists, plus SHA-512 and SHA-256, and three “tree modes” of Blake and Keccak that 
implement i-thread parallel implementations of the hash algorithms.  By clicking on the 
name of the algorithm the reader may see a graph of the performance of all the 
implementations tested for that algorithm.  The implementations that depend heavily on 
vector units are often given names that identify the type of vector unit: sse, avx, mmx for 
AMD64 or x86 machines, or NEON for ARM machines. 
 
We categorize the computers used in eBASH into four of the five groups described 
above: 

• AMD64: use the AMD64 ISA and generally include a vector unit.  
• X86: use the 32-bit X86 ISA and may include a vector unit.   
• 32-bit RISC: use the following 32-bit RISC ISAs: ARM, MIPS or PPC.  A vector 

unit is not used.  
• ARM-NEON: use the 32-bit ARM ISA with the NEON vector unit. 

 
To try to visually distil the complex graphs of the eBASH into a simpler presentation, we 
categorize performance of each algorithm to high, medium or low for the four different 
categories of computers in Figure x and y, in a manner somewhat analogous to grading 
papers into different letter grades.  Figure x is for long messages (greater than 4096 
bytes), while Figure y illustrates shorter messages of 64 bytes.  These are based on the 
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eBASH “shootout” graphs for six different sizes of messages (long, 4096-bytes, 1536-
bytes, 576-bytes, 64-bytes and 8-bytes). These are essentially “eyeball” judgments of 
relatively noisy data; the reader can study Figures A-1 through A-6, the actual detailed 
eBASH shootout plots, to see how well our categorizations fit the data.  The data for JH 
in particular seems erratic: this is apparently because the fastest JH vector code was 
completed very late, and had been run on some but not all the benchmark machines.  This 
makes little comparative difference, because even the fastest JH implementations are 
among the slowest of the algorithms.  For each category of machine, the performance 
range of the algorithms seems to be between two and three octaves, that is, the fastest 
algorithms seem to be about four to eight times the speed of the slowest. 
 

1.2.1.1 Performance on Long Messages 
 
AMD64: Skein (all sizes) and Blake-512 are consistently the fastest algorithms and the 
only two algorithms that generally are faster than SHA-512 on AMD64 platforms.  
Blake-256 is also fast on newer AMD64 platforms with larger vector register files [Neves 
12], but falls off on older machines.  SHA-512, SHA-256 and Keccak-256 are in the 
medium range averaging about half the speed of the high group, along with Grøstl-256 
and Grøstl-512 on very new machines with the AES-NI instructions.  JH also makes the 
medium group for very recent AMD64 processors, but not older processors.  Grøstl-256, 
Grøstl-512 (no AES-NI) and Keccak-512 and JH are in the low group, with performance 
only around ¼ of that of the high performance group. 
 
 
X86: The high group here is Blake-256, Skein, and SHA-256, all ARX type algorithms.  
The low group is Keccak-512, and Grøstl.  Although Skein does well, algorithms that use 
a 32-bit word may have an advantage on these 32-bit machines. 
 
ARM - NEON: The high group is Blake, Skein and SHA-256, the medium is JH and 
Keccak-256, while the low group is Grøstl, Keccak-512 and SHA-512.  The ability of the 
NEON vector unit to do 64-bit operations probably helps Skein and Blake-512 here. 
 
32-bit RISC: The high performance algorithms are Blake-256 and SHA-256, with Grøstl, 
Keccak-512 and JH at the low end. 
 
 
Algorithm AMD64 X86 ARM-NEON 32-bit RISC 
 High Med Low High Med Low High Med Low High Med Low 
Blake-512  �    �  �    �  
Blake-256 � �  �   �   �   
Grøstl-512  �* �   �   �   � 
Grøstl-256  � �   �   �   � 
JH   �  � �  �    � 
Keccak-512   �   �   �   � 
Keccak-256  �   � �  �   �  
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Skein  �   � �  �    �  
SHA-512  �   �    �  �  
SHA-256  �  �   �   �   

Table x - eBASH performance comparison for long (> 4096-byte) messages 
 

 * Only on processors with AES NI instructions 
 
 
 

1.2.1.2 Performance on 64-byte Messages 
 
This comparatively small message size starts to show the effects of both fixed per 
message overhead and of different input block sizes, which range from 512 to 1088 bits. 
Average cycles per byte seem to be about twice that of long messages, but the ordering of 
things has changed remarkably little.  At this message size Keccak-512 looks about as 
good in comparison to others as it ever will, since 64 bytes just fits, with padding, in a 
single message block and it has no extra finalization round, while other algorithms either 
need two blocks or process a significantly larger 128-byte message block.   
 
AMD64: As with long messages, Blake and Skein lead all others.  Blake-256 is fast on 
new machines with large vector register sizes but drops down into the medium level for 
older AMD64 machines.  Keccak-512 is now in the medium level with Keccak-256, 
because its 576-bit input block inputs the entire message in 1 block and therefore runs as 
fast as Kecak-256.  Grøstl-512 falls back to the low category even with the AES-NI 
instructions, probably because of the extra overhead of the final “blank” round.  Grøstl-
256 stays in the medium group with SHA-256 and SHA-512. 
 
X86: Blake-256, Skein and SHA-256 are fast on this 32-bit word ISA.  With no AES 
hardware support Grøstl-256 and 512 shows low performance 
  along with Keccak-512 and SHA-512. 
 
ARM-NEON: Blake-256, Blake-512 and SHA-256 are fast, while Grøstl-256, Grøstl-512 
and SHA-512 are the slowest. 
 
32-bit RISC: The two algorithms that use 32-bit modular addition extensively are fast, 
while Grøstl-256, Grøstl-512 and JH are slow.   
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Fig x - eBASH performance comparison for long (> 4096-byte) messages 
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Fig. y - eBASH relative performance comparison for 64-byte messages 
 
 
 

                   AMD64 
 
Algorithm        Relative Performance  
 High Med Low 
Blake-512    
Blake-256    
Grostel-512    
Grostel-256    
JH 
 

   

Keccak-512    
Keccak-256    
Skein 
 

   

SHA-512    
SHA-256    
 

                          X86 
 
Algorithm        Relative Performance 
 High Med Low 
Blake-512    
Blake-256    
Grostel-512    
Grostel-256    
JH 
 

   

Keccak-512    
Keccak-256    
Skein-512 
 

   

SHA-512    
SHA-256    

             ARM with - NEON 
 
Algorithm        Relative performance 
 
 High Med Low 
Blake-512    
Blake-256    
Grostel-512    
Grostel-256    
JH 
 

   

Keccak-512    
Keccak-256    
Skein 
 

   

SHA-512    
SHA-256    
 

      32-bit RISC w/o vector unit 
 
Algorithm        Relative performance 
 
 High Med Low 
Blake-512    
Blake-256    
Grostel-512    
Grostel-256    
JH 
 

   

Keccak-512    
Keccak-256    
Skein 
 

   

SHA-512    
SHA-256    
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,,        
Grøstl-256 
Algorithm 

AMD64 X86 ARM-NEON 32-bit RISC 

 High Med Low High Med Low High Med Low High Med Low 
Blake-512  �    �  �    �  
Blake-256 � �  �   �   �   
Grøstl-512  �* �   �   �   � 
Grøstl-256  � �   �   �   � 
JH   �  � �  �    � 
Keccak-512   �   �   �   � 
Keccak-256  �   � �  �   �  
Skein  �   � �  �    �  
SHA-512  �   �    �  �  
SHA-256  �  �   �   �   
Table x - eBASH performance comparison for long (> 4096-byte) messages * Only on 
processors with AES NI 
 
 
Algorithm AMD64 X86 ARM-NEON 32-bit RISC 
 High Med Low High Med Low High Med Low High Med Low 
Blake-512  �    �  �    �  
Blake-256 � �  �   �   �   
Grøstl-512   �   �   �   � 
Grøstl-256  �* �   �   �   � 
JH  �   � �  �    � 
Keccak-512  �   �   �   �  
Keccak-256  �   � �  �   �  
Skein  �   � �   �   �  
SHA-512  �    �   �  �  
SHA-256  �  �   �   �   

Table y - eBASH performance comparison for 64-byte messages  
 
* Only on processors with AES NI instructions 
 
 

1.2.2 XBX: Embedded Microcontrollers 
 
 
Most of our data on embedded microcontrollers comes from the XBX effort.  XBX 
[Wenzel-Benner 12] focused on embedded computers where it is usual to compile or 
assemble code on some development system, and then run it on a small computer or 
“microcontroller.”  They collected and measured SHA-3 implementations on eight 
embedded platforms.  The website for the effort is at: http://xbx.das-labor.org/trac/wiki. 
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Some of the 32-bit ARM processors benchmarked on XBX were as powerful as some of 
the machines tested by eBASH, and included vector units, while others were 8- and 16-
bit machines characteristically used with very little memory. 
 
In contrast to eBASH, XBX gives the RAM and ROM requirements of the fastest 
implementations for each processor tested, and “area” versus speed plots, for each of the 
implementations measured.  The area metric used in the XBX is area = 4 × RAM + ROM.  
This is a heuristic based on the rule of thumb that RAM memory requires about 4 times 
the area on a chip as ROM memory.  In the larger systems used in eBASH, the memory 
required by hash algorithms is rarely an issue, but memory use is often an issue and 
sometimes the major constraint with embedded microcontrollers.  In addition to XBX, 
[Yang 12] gives optimized implementations for all five finalists plus SHA-2 on the 
ARM-11 processor, which is very commonly used in cell phones. 
 
Eight-bit: Only one 8-bit microcontroller was tested, the Atmel ATmega128P.  The 
smallest area and Grøstl-256 attained the best performance was attained by Grøstl-256, 
perhaps the only software case where Grøstl was the fastest algorithm.  This probably is 
because of the 8-bit orientation of the AES operations used by Grøstl.  Blake-256 was 
nearly as fast as Grøstl, but took somewhat more area.  Keccak-256 was also compact 
and third in throughput.  Interestingly, SHA-256 was comparatively big and slow and 
SHA-512 had the worst overall performance of any algorithm.   
 
Sixteen-bit: Only one 16-bit microcontroller, the Texas Instruments’ MSP430FG4618, 
was tested.  Overall, Blake-256 was fast and small, and SHA-256 was second.  Grøstl-
256 was small but fairly slow.  Keccak-256 was a bit bigger than Blake-256 and 
somewhat faster than Grøstl-256, but no match for either Blake-256 or SHA-256.  
Keccak-256 has relatively small area and reasonably good throughput. 
 
ARM (thumb instructions): This version of the ARM processor is a low-end 
microcontroller that only implements the 16-bit thumb instructions.  The XBX authors 
count small area to be the primary goal for this platform, and Blake and JH-256 are the 
two smallest algorithms.  Blake-256 and SHA-256 have the highest (very similar) 
throughputs, but the minimum area requirements of SHA-256 are is higher than Blake-
256. Keccak has a fairly small area requirement, and Keccak-256 is third in overall 
performance.  Skein has the largest area requirement, and Grøstl-512 and JH are simply 
slow. 
 
32-bit RISC: This category includes several ARM processors running the regular 32-bit 
instructions (but without the NEON vector processor) and a 32-bit MIPS processor. Both 
XBX and [Yang 12] give us data here. SHA-256 is the fastest algorithm overall, followed 
by Blake-256.  Since these are both 32-bit oriented ARX algorithms and these are all 32-
bit RISC architectures, it is not surprisingexpected that they should be fastest; but in 
general-purpose computers, Blake-256 had the edge over SHA-256.  We suspect that this 
is because AMD64 and X86 machines have vector units or dual launch superscalar ALUs 
and apparently are more readily able to exploit the parallel processing opportunities of 
Blake-256, than those of SHA-256.  Skein, Blake-512, Keccak-256 and SHA-512 vie for 
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third place, depending on the specific processor, while Grøstl-256, Grøstl-512 and JH are 
at the bottom, much (typically 3 to 8 times) slower than SHA-256.  In area, Blake-256 
and Grøstl-256 are usually the smallest. 
 
ARM with NEON: This is a relatively fast ARM core with the addition of a vector unit 
that supports 64-bit operations.  With the addition of the vector unit, Skein becomes the 
fastest algorithm, followed fairly closely by Blake-256, Blake-512 and SHA-256.  
Keccak-256 is about half the speed of Skein while Keccak-512 about three times slower.  
JH and Grøstl are four to nine times slower than Skein.  The overall results are similar to 
those on eBASH for ARMs with the NEON vector unit, although JH seems to do 
somewhat worse in the XBX benchmarks than the eBASH results. 
 
The eBASH investigators give an overall ranking for embedded computers that factors in 
their understanding of whether the usual goal for the particular computer is throughput or 
minimum area.  In that ranking Blake is first, while Skein barely edges out Keccak and 
Grøstl for second place.  They did not include SHA-2 in this ranking; however, 
considering the good performance of SHA-256 on 32-bit RISC machines, if SHA-2 were 
included, it might beat Skein for second place, since there are four 32-bit platforms where 
SHA-2 is the fastest algorithm, although rarely by a large margin.  But the smallest SHA-
256 implementations nearly always require somewhat more area than the smallest Blake-
256 implementations, so Blake-256 has the overall advantage. 
 

1.2.3 The Future 
An obvious starting point for projecting the future is performance data from the recent 
higher end processors.  Figure z graphs eBASH data for three recent AMD64 architecture 
processors.  In these graphs, each bar represents the mean cycles per byte for the fastest 
implementation of each algorithm on one of the three processors.  Smaller bars mean 
faster throughput.  The five finalist algorithms plus SHA-2 are plotted; however, in the 
case of Skein and JH, only one bar is plotted, because all four output sizes use the same 
compression function, and run at about the same rate. Following our nomenclature, where 
we used one designation for two or four message digest sizes when they run at the same 
rate, we plot one bar for each version with a different rate.  For example, since Blake-256 
and Blake-224 run at the same speed, we plot only Blake-256.  But we plot all four digest 
sizes for Keccak, because each runs at a different speed.  For consistency with other 
algorithms, the nomenclature for Keccak has also been changed in this report from 
eBASH, which generally labels Keccak variants by their capacity; for example, the 
eBASH “keccakc512”, which outputs a 256-bit message digest, becomes “keccak-256” in 
Figure z. 
 
Much of the ISA development activity in the past decade has been the addition and 
extension of vector units and their instructions.  It is reasonable to expect vector register 
files to continue to grow, more instructions to be added, and to find more use in even 
embedded systems.  It seems too big an assumption to expect that because AES has 
inspired additional support instructions, that SHA-3 would also do so.  If it did it would 
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likely be far down the road, unless the instructions, like vector rotates, have more general 
uses than implementing hash functions.   
 
Another kind of processor that we have not considered in the competition is Graphics 
Processor Units (GPUs) that are common on processors for laptop, desktop and even 
tablet computers. These are arrays of fairly specialized processors organized for stream 
processing and are most commonly used for image rendering.  Gaming and high 
definition animation have driven their development and they have been applied 
cryptography, but more for cryptanalysis than for protecting data; GPUs are well suited to 
applications that can be divided into many independent processes, such as password 
cracking.  But it is hard for to envision much near term use for data protection.       
 
Figure z-1 plots the cycles required per message byte of long messages for “h6sandy,” an 
Intel® Core i3-2310M1, a “Sandy Bridge” internal architecture processor with two 2100 
MHz cores, intended for laptop computers.  Figure z-2 plots cycles per byte for “sandy0,” 
an Intel Core i7-2600K, a Sandy Bridge four core 3400 MHz processor intended for 
relatively high-end desktop computers.  Figure z-3 plots cycles per byte for “hydra6,” an 
AMD FX-8120, a “Bulldozer” internal architecture processor with four 3100 MHz cores, 
also for desktop applications.  The Intel Sandy Bridge processors implement the AVX 
vector instruction set, with sixteen 256-bit registers; and the AMD Bulldozer processors 
implement the XOP vector instruction set, which is similar to the AVX with some 
additional extensions including, in particular, the 32- and 64-bit rotate operations (which 
may or may not presage similar extensions to future Intel vector units).  There is one 
significant difference between the two Sandy Bridge processors: sandy0 implements the 
AES-NI instructions, and h6sandy does not.  The AES-NI instructionsis affects only the 
performance of Grøstl. 
 
In addition to the five finalists and SHA-2 algorithms described above, a “tree-mode,” 
labeled “Bblake-256” is implemented on all three processors, while two more tree-modes, 
Bblake-512 and Keccak-256treed2 are implemented for the AMD FX-8120.  These 
modes generate a single 512 or 256-bit hash from two parallel streams using the regular 
compression function, and are examples of “Processing Multiple Buffers in Parallel” or 
“multi-buffering” to facilitate efficient use of [Gopal 10a]; in these particular cases by 
dividing a single file into two parts to be hashed in parallel.  The same technique can also 
be applied to two independent hash streams, as might occur on a server with many 
simultaneously active TLS connections. 
 
Skein does not seem to benefit from the vector units, largely, we believe, because of the 
different rotation constants used in its Mix operations, even though four parallel Mix 
operations occur in each round.  Skein, however, is one of the fastest algorithms on all 
three of these machines, relying primarily on their superscalar general purpose ALUs.   

                                                 
1 The use of the corporate names Intel and AMD and the identification of specific product 
models, processor architectures and their features is to enable readers to understand and 
check the performance data presented here.  It is not an endorsement or recommendation 
by NIST of any company, product or feature. 
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Blake logically allows parallel execution of four of its building-block G-functions, with 
their rotates; unlike Skein, Blake’s four parallel rotates all use the same rotation values, 
facilitating vectorization.  We see that on these machines with the most advanced vector 
units, Blake-256, which uses 32-bit words, becomes almost as fast as Skein-256, which 
uses 64-bit words and in older AMD64 machines has a bigger advantage over Blake-256. 
Blake 512 pulls a bit ahead of Skein-512 on these machines, although Skein-512 has the 
advantage on older AMD64 machines. 
 
We also see that Keccak does relatively better on the Bulldozer because only the 
Bulldozer implements vector rotation instructions, giving about a factor of 1.7 speed 
improvement [van Assche 12].  Blake also benefits from the rotate instruction [Neves 12].  
A single Skein thread probably won’t be helped very much by a simple rotate instruction 
that rotates all words by the same amount.  Grøstl is significantly helped by the AES-NI 
instructions and corresponding AES extension on the Bulldozer.  JH clearly benefits from 
vector implementations, but still is among the slowest on all three processors.  It is hard 
to rule out the possibility that there is some better way to vectorize JH that makes it faster 
relative to the other units, but it is not obvious what it would be.  Neither JH nor Grøstl 
seem to benefit from a rotate instruction.    
 
All of the candidates as well as SHA-2 potentially can benefit from tree mode or multi-
buffer implementations, although perhaps to varying degrees.  The different rotation 
values that complicate vectorizing a single Skein thread should not matter in a multi-
buffer implementation.  But there has not been enough work done on this to draw strong 
conclusions about which algorithms benefit most.  
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Figure z-1 – SHA-3 Finalist Cycles/Byte on Current Sandy Bridge Desktop Processor 

 

2011 Intel Core i3-2310M; h6sandy; supercop-2012052 1

0

5

10

15

20

25

30

bla
ke

-5
12

Bbla
ke

-2
56

SKEIN
 (a

ll s
ize

s)

ke
cc

ak
-2

56
tre

ed
2

bla
ke

-2
56

ke
cc

ak
-2

24

ke
cc

ak
12

56

sh
a-

512

ke
cc

ak
-3

84

JH
 (a

ll s
ize

s)

sh
a-

256

gr
oe

stl
-2

56

ke
cc

ak
c-2

56

gr
oe

stl
-5

12

cy
cl

es
/b

yt
e

 
Figure z-2 – SHA-3 Finalist Cycles/Byte on Current Sandy Bridge Laptop Processor 



 
Figure z-3 - SHA-3 Finalist Cycles/Byte on Current Bulldozer Desktop Processor 

 
 
 
 
 
 



 
 

1.2.4 Software Performance Summary 
 
Skein and Blake, the two ARX finalist candidates, have the best overall software 
performance. Only Skein and Blake seem to be faster than SHA-2 in most cases.   
 
Skein has the advantage of a single compression function for all four message digest sizes, 
which saves memory if all four sizes are required.  Skein-256 has a small to moderate 
performance advantage over Blake-256 on AMD64 platforms, which may, or may not 
carry over to future 64-bit ARMv8 processors, if they the processors adopt super-scalar 
ALUs similar to the ones used in AMD64 processors. Blake-512 seems to gain a modest 
performance advantage over Skein-512 on more recent AMD64 machines by better 
fitting their vector units.  
 
On 32-bit machines (mainly ARM processors) without vector units, Blake-256 is the 
clear overall leader, although it does not offer any real speed advantage over SHA-256.  
On ARMs with the NEON vector unit, Skein seems the fastest algorithm, followed fairly 
closely by Blake. 
 
On small embedded computers, Blake-32 has decisively the best overall performance.  
Blake-32’s maximum throughput is often similar to, or sometimes less than SHA-256, 
but Blake-32 generally had smaller memory requirements than SHA-2 and most of the 
other candidates. 
 
Keccak is reasonably fast for smaller digest sizes on a range of machines, but Keccak-
512 is among the slowerst algorithms on most machines.  Keccak benefits significantly 
from vector rotate instructions, which may become common on future processors.  Like 
Skein, Keccak uses one compression function for all four digest sizes, and is amenable to 
compact implementations. 
 
Grøstl-256 seems to need hardware support of AES S-boxes to achieve even the medium 
level of performance on computers with a 64- or 32-bit word orientation.  Even with such 
support, Grøstl Grostel-512 ranks near the bottom.  However, on the one 8-bit 
microcontroller tested, Grøstl-128 was the fastest candidate finalist and one of the most 
compact. 
 
JH seems to benefit from larger vector sizes, but even with vector instruction sets that 
allow 128-bit operations, it strains to reach even the medium performance level.   
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Appendix A – e-Bash shootout Plots 
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